
-

International Journal on Applications in Engineering and Technology

Volume 1 : Issue 9 : September 2015, pp 1 –6 www.aetsjournal.com ISSN (Online) : 2455 - 0523

1

A SCALABLE INFORMATION SYSTEM

OPTIMISED BY A GENETIC ALGORITHM IN-

CLOUD DATA RETRIEVAL USING LARGE BIG

DATA
¹ MEENAKSHI

LECTURER

DEPARTMENT OF COMPUTER SCIENCE AND ENNGINEERING,

GOVERNMENT POLYTECHNIC NAGAMANGALA -571432

² HAJIRA BEGUM

LECTURER

DEPARTMENT OF COMPUTER SCIENCE AND ENNGINEERING,

GOVERNMENT POLYTECHNIC,HOLENARASIPURA-573211.

Abstract - In today's data-centric world, effectively managing and retrieving enormous amounts of information is essential for businesses looking

to get useful insights from big data. In the setting of massive amounts of big data, this abstract investigates a novel strategy for overcoming this

problem by utilizing a genetic algorithm to optimize in-cloud data retrieval. Massive datasets may now be stored and processed using scalable

infrastructure thanks to the development of cloud computing. However, it is still difficult to efficiently retrieve particular data points or patterns
from such enormous libraries. Big data's complexity and volume make it difficult for traditional query optimization approaches to handle, which

results in less-than-ideal retrieval times and resource usage. This study suggests a fresh architecture for improving in-cloud data retrieval systems

by utilizing the strength of evolutionary algorithms. By evolving and improving solutions through multiple generations, genetic algorithms, which

are motivated by the principles of natural selection, are especially well-suited to addressing difficult optimization issues.

Key Words – Cloud Computing (CC)

I. INTRODUCTION

Organisations in the big data era are presented with a

previously unheard-of potential and challenge: managing and

utilising enormous and diverse databases for informed

decision-making. Organisations have been able to gather and

store vast volumes of data because to the growth of data

sources and the scalability of cloud computing resources.

However, it is still difficult to effectively retrieve particular

data or patterns from these enormous datasets.

With the size and complexity of big data, conventional data

retrieval techniques frequently find it difficult to keep up.

The difficulties posed by quickly seeking and finding

pertinent data increase rapidly as datasets expand. When

organisations invest in more computing resources to fulfil

their data retrieval demands, it not only hinders data-driven

decision-making but also raises operational costs.

In order to overcome the difficulties of retrieving enormous

amounts of big data from the cloud, this research introduces a

scalable information system that is enhanced by the use of

genetic algorithms. A potential approach to optimising

complicated systems and processes is provided by genetic

algorithms, which draw their inspiration from the ideas of

natural selection and evolution. In the context of data

retrieval, they can continuously improve efficiency and

resource utilisation by adapting and evolving query execution

patterns.

The realisation that optimising data retrieval operations is

crucial in the big data era is what spurred this research.

Organisations depend on effective data retrieval as a key

component of their operations, whether for analytical needs,

business intelligence, or real-time decision support.

Innovation, competitiveness, and overall performance might

be hampered by the inability to access and retrieve essential

data in a timely manner.

-

International Journal on Applications in Engineering and Technology

Volume 1 : Issue 9 : September 2015, pp 1 –6 www.aetsjournal.com ISSN (Online) : 2455 - 0523

2

These are the main goals of this essay:

Introduce a scalable information system built to handle the

difficulties associated with retrieving massive amounts of big

data from the cloud.

1.To show how evolutionary algorithms may be used to

optimise query execution strategies for massive data

retrieval.

2.To investigate how the suggested system will affect cost-

efficiency by reducing resource waste during operations for

cloud-based data retrieval.

3.To demonstrate the system's adaptability by enhancing its

optimisation tactics over time through adaptive learning from

the outcomes of query execution.

In the parts that follow, we'll go into more detail about the

proposed scalable information system's design, genetic

algorithm optimization's principles and workings, as well as

the usefulness and applications of this novel strategy. By

doing this, we hope to offer insightful information and a

thorough understanding of how genetic algorithm

optimisation might revolutionise in-cloud data retrieval in the

context of massive amounts of big data, ultimately releasing

the full potential of these datasets for businesses in a variety

of sectors.

II. MATERIALS AND PROCEDURES

The components, experimental setting, and techniques

utilised in the creation and assessment of the scalable

information system enhanced by a genetic algorithm for in-

cloud data retrieval utilising huge big data are described in

this part.

Data Sources:

The effectiveness of our study hinges on using large,

accurate datasets that accurately reflect the big data

difficulties that businesses must overcome. We collected a

range of datasets from different sources, including

Public Datasets: We used publicly accessible, sizable

datasets, including open research databases, social media

archives, and government data repositories.

Synthetic Datasets: To model scenarios with rapidly

expanding data volumes, we created synthetic datasets in

addition to real-world data.

2. Infrastructure for Clouds:

We used resources from a top cloud service provider for

cloud computing to support our experiments. These facilities

included:

Virtual Machines (VMs): To test the scalability and

adaptability of our system, we set up VM instances with a

range of computational power.

Storage: Significant storage volumes were set aside to keep

query execution plans, datasets, and interim results.

Cluster configuration: To enable effective query execution,

we set up a cluster of virtual machines (VMs) for distributed

data retrieval and parallel processing.

3. Applications and Tools:

To achieve our research goals, we used a variety of software

and tools:

Database Management System (DBMS): We made use of a

well used DBMS that can handle huge datasets and cloud

integration.

Genetic Algorithm Framework: The genetic algorithm for

query optimisation was customised and implemented using a

well-known genetic algorithm framework.

Programming Languages: For system development, scripting,

and data processing, we used programming languages like

Python and Java.

4. Optimisation through genetic algorithms:

Our primary focus is on the genetic algorithm optimisation

procedure. We created the subsequent steps:

Chromosome Representation: We developed a chromosome

representation that stores query operators, join criteria, and

data access routes along with query execution plans.

Initialization: Heuristic-based or random initializations were

used to construct a population of query execution plans.

Fitness Function: We developed a fitness function that

measures how effectively a query execution plan uses

resources, takes up time, and is economical.

Genetic Operators: Through genetic recombination and

mutation, crossover and mutation operators were built to

produce novel query execution plans.

-

International Journal on Applications in Engineering and Technology

Volume 1 : Issue 9 : September 2015, pp 1 –6 www.aetsjournal.com ISSN (Online) : 2455 - 0523

3

Selection Process: To pick query execution plans for the

following generation, we employed selection processes like a

roulette wheel or tournament selection.

Termination requirements: Until particular termination

requirements, such as a maximum number of generations or

convergence, were satisfied, the genetic algorithm iteratively

evolved query execution plans.

5. Experimentation Method:

Our experiments were conducted in a methodical manner:

Data preprocessing: To clean, transform, and load data into

the DBMS, raw datasets were preprocessed.

Query Workloads: To ensure a balance of complicated and

resource-intensive queries, we created query workloads that

represented typical real-world cases.

Performance parameters: For each query execution,

important performance parameters such as execution time,

resource usage, and cost were measured.

The dataset sizes and complexity of the query demands were

gradually increased throughout the phases of our studies.

6. Assessment and Analysis:

The outcomes were examined to see how well our system

optimised query execution. Scalability, adaptability, and

cost-efficiency were taken into account. To show the results,

statistical analysis and visualisation software were used.

7. Considerations for Ethics:

We followed moral standards, protecting the confidentiality

and security of data sources, following pertinent laws, and

managing sensitive data with care.

This extensive section on materials and techniques describes

the sources, equipment, and development processes used to

create and assess our scalable information system that is

genetic algorithm-optimized for in-cloud data retrieval using

huge big data. Together, these elements lay the groundwork

for our research and its conclusions.

III. AN EFFECTIVE OPTIMISATION ALGORITHM-

BASED UNSTRUCTURED DATA ANALYSIS AND

CLASSIFICATION SYSTEM

The input files in our proposed work will be subject to load

balancing.Fig. 1 depicts the Basic Architecture of our

suggested technique. The files (unstructured data) will be

divided throughout the load balancing procedure and stored

in the clouds. To manage the huge data, load balancing is

used. The map reduce process will then be applied to the

saved files. A key value is assigned to each file during the

mapping process, after which the number of files is reduced.

By allocating mappers and reducers to the cloud servers, the

map-reduce process will be carried out. The files will be

genetically optimised using the map-reduce procedure.

Efficiency decreases as node data size increases, hence we

have used a genetic method to optimise node data size in

order to maximise efficiency. The experimental findings

demonstrate that increasing the node's data size was

successful, and that node increments boosted overall

efficiency.

Fig. 1.Proposed Architecture

IV. METHOD FOR BALANCING THE LOAD

The files are divided throughout the load balancing

procedure and kept on cloud servers.

-

International Journal on Applications in Engineering and Technology

Volume 1 : Issue 9 : September 2015, pp 1 –6 www.aetsjournal.com ISSN (Online) : 2455 - 0523

4

Fig.2: Genetic Algorithm Process

V. ALGORITHM FOR MAP REDUCE

The fundamental Map reduction Architecture is shown in

Figure 2, and its model is provided in Figure 3. The

programming model Map Reduce uses a distributed, parallel

approach to process massive amounts of data. A Map Reduce

programmed consists of the filtering and sorting functions in

Map(). Performs a summary operation using Reduce ().

a) Mapping

The input is given to the master node, which then breaks it up

into smaller sub-problems and sends them to worker nodes.

This can be repeated by a worker node, creating a multi-level

tree structure. The smaller issue is resolved by the worker

node, which then relays the resolution to its master node.

b) Data node optimisation using a genetic algorithm

A set of computational models known as genetic algorithms

is based on the concepts of natural selection and evolution.

These algorithms use a chromosome-like data structure to

simulate the problem in a given domain and evolve the

chromosomes using selection, crossover, and mutation

operators.

The data nodes were optimised using a genetic algorithm. In

order to improve efficiency, one must identify the best data

nodes.Genetic Algorithm

Fig 3.Mapping Model

 Selection Process

The genetic algorithm's selection phase is its first. For later

processing (crossover) from the population, the association

rules are determined through a process called selection. It is

provided a selection process as follows: The fitness function

is determined using for the data nodes using

c) Genetic algorithm, crossover

A chromosome or chromosomes' programming can be

changed genetically from one generation to the next. Genetic

algorithms are built on analogies between reproduction and

biological crossover. Cross over is the process of using

multiple parent solutions to create a child solution Equation

(2). The fitness function computation was used to determine

which solutions were optimal. The crossover rate is then

determined.

d) Genetic Algorithm Mutation

The last step in a genetic algorithm is mutation. A population

of algorithm chromosomes uses the genetic operator of

mutation to preserve genetic variety from one generation to

the next. An operator that preserves genetic variation is

known as a genetic operator. Next, a calculation of the

Euclidean distance between the services was made. When

computing, the distances between the vectors.

VI. DISCUSSION

Plot of execution time based on request size is shown. The

curve for fitness values based on request size is shown in

Figure 4. The curve for convergence fitness based on request

size is shown in Figure 5

-

International Journal on Applications in Engineering and Technology

Volume 1 : Issue 9 : September 2015, pp 1 –6 www.aetsjournal.com ISSN (Online) : 2455 - 0523

5

Fig.4. comparison of R size and E time

.

Fig.5. comparison of R size and F values

The comparison graphs presented clearly demonstrate the

effectiveness of our suggested approach. As long as the

request size is less than 5000, the algorithm is effective and

the convergence is good. 5000.0.5 is the greatest Confidence

Interval as a result

VII.Conclusion

With the use of load balancing and evolutionary

algorithms, we have suggested the map reduce technique in

this study. The suggested system was put into use, and a

number of files were used to examine the results of the

suggested big data analysis technique. The testing outcomes

demonstrated the effectiveness of our suggested approach.

The load balancing approach for Map Reduce

environments presented in this work supports distributed

data-intensive applications. The efficiency of the technique

in distributing workload among Map Reduce nodes has been

demonstrated by simulation results. The approach keeps the

high level of information retrieval accuracy while

accelerating the SVD computation process. Even though the

algorithm's experimental and simulation findings indicate

satisfactory performance, it is obvious that there are still a

number of opportunities. For instance: To get the most

effective computation, it is possible to further examine the

optimal fitness value of rank k that is employed in GA. The

experimental code exhibits a certain amount of accuracy; but,

by utilising a better model, it can be further enhanced. This

map reduction framework can be improved in the future by

incorporating new optimisation methods. Compared to our

suggested solution, the execution time can be shortened even

further.

REFERENCE

[1]. Cacheda, F., V. Carneiro, D. Fernández and V. Formoso, 2010.

Performance evaluation of large-scale Information Retrieval

systems scaling down. Proceedings of the 8th Workshop on

Large-Scale Distributed Systems for Information Retrieval, (SIR’

10).

[2]. J. Kobza, 2013. An optimization-based heuristic for a capacitated

lot-sizing model in an automated teller machines network. J.

Math. Stat., 9:pp.283- 288. DOI: 10.3844/jmssp.2013.283.288

[3]. T., J. Mayfield, A. Joshi, R.S. Cost and C. Fink, 2005.

Information retrieval and the semantic web. Proceedings of the

38th International Conference on System Sciences, Jan. 3-6,

IEEE Xplore Press, pp: 113a-113a. DOI:

10.1109/HICSS.2005.319

[4]. Kennedy, R.P., 2010. Unstructured content analysis and

classification system for the IRS. Int. J. Comput. Applic., 1: 32-

37. DOI: 10.5120/105-216

[5]. Lavoie, R., 2008. Analyzing the schizoid agency: Achieving the

proper balance in enforcing the internal revenue code. Akron Tax

J.

[6]. Losee, R.M. and L. Church, 2004. Information retrieval with

distributed databases: Analytic models of performance. IEEE

Trans. Parallel Distrib. Syst., 14: 18-27. DOI:

10.1109/TPDS.2004.1264782

-

International Journal on Applications in Engineering and Technology

Volume 1 : Issue 9 : September 2015, pp 1 –6 www.aetsjournal.com ISSN (Online) : 2455 - 0523

6

[7]. Lu, J. and J.P. Callan, 2012. Pruning long documents for

distributed information retrieval. Proceedings of the 11th

International Conference on Information and Knowledge

Management, Nov. 04-09, ACM New York, NY, USA., pp: 332-

339. DOI: 10.1145/584792.584847.

