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Abstract— The timely identification and early 

prevention of plant diseases are essential for improving 

production. In this paper, deep convolutional neural 

network (CNN) models are implemented to identify and 

diagnose diseases in plants from their leaves, since CNNs 

have achieved impressive results in the field of machine 

vision. Standard CNN models require a large number of 

parameters and higher computation cost. In this paper, we 

replaced standard convolution with depth=separable 

convolution, which reduces the parameter number and 

computation cost. The implemented models were trained 

with an open dataset consisting of 14 different plant 

species, and 38 different categorical disease classes and 

healthy plant leaves. The implemented models achieved a 

disease-classification accuracy rates of 98.42%, 99.11%, 

97.02%, and 99.56% using InceptionV3, 

InceptionResNetV2, MobileNetV2, and EfficientNetB0, 

respectively, which were greater than that of traditional 

handcrafted-feature-based approaches. In comparison with 

other deep-learning models, the implemented model 

achieved better performance in terms of accuracy and it 

required less training time. Moreover, the MobileNetV2 

architecture is compatible with mobile devices using the 

optimized parameter. The accuracy results in the 

identification of diseases showed that the deep CNN model 

is promising and can greatly impact the efficient 

identification of the diseases, and may have potential in the 

detection of diseases in real-time agricultural systems. 

 

 
. 

Keywords: artificial intelligence; convolutional 

neural network; deep learning; machine learning. 

I. INTRODUCTION 

he automated identification of plant diseases 

based on plant leaves is a major land- mark in 

the field of agriculture. Moreover, the early and 

timely identification of plant diseases positively 

impacts crop yield and quality [1]. In remote 

areas, farmers may need to travel far to consult an 

expert, which is time-consuming and expensive 

[3,4]. Automated computational systems for the 

detection and diagnosis of plant diseases assist 

farmers  and agronomists with their high 

throughput and precision. 

In order to overcome the above problems, 

researchers have thought of several solu- tions. 

Various types of feature sets can be used in 

machine learning for the classification of plant 

diseases. Among these, the most popular feature 

sets are traditional handcrafted and deep-learning 

(DL)-based features. Preprocessing, such as image 

enhancement, color transformation, and 

segmentation [5], is a prerequisite before efficiently 

extracting features. After feature extraction, 
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different classifiers can be used. Some popular 

classifiers are K-nearest neighbor (KNN) [6], 

support vector machine (SVM) [7], decision tree, 

random forest (RF) [8], naive Bayes  (NB), 

logistic regression (LR), rule generation [9], 

artificial neural networks (ANNs), and Deep 

CNN. KNN is a simple supervised-machine- 

learning algorithm used in classification 

problems, and it uses similarity measurements 

(i.e., dis- tance, proximity, or closeness) [10]. 

SVM is also a popular supervised-machine- 

learning technique used for  classification 

purposes [11,12]. The idea behind SVM is to find 

a hy- perplane between data classes that divides 

each class [13,14]. An NB classifier makes 

predictions on the basis of probability 

measurements [15]. It assumes that the generated 

features are independent from each other [16]. ANN 

is a set of connected inputs, an output network that 

is modeled after the human neural system cells [17]. 

The network consists of an input layer, 

intermediate layer, and output layer. Learning is 

performed by adjusting weights [18]. 

Handcrafted-feature-based methods achieve good 

classification results, but have some limitations 

such as requiring huge amounts of preprocessing, 

and the process is time-consuming. Feature 

extraction in the handcrafted-based approach is 

limited, and extracted features might not be 

enough for correct identification, which affects 

accuracy. 

On the other hand, deep-learning-based techniques, 

particularly CNNs, are the most promising approach 

for automatically learning decisive and 

discriminative features. Deep learning (DL) consists 

of different convolutional layers that represent 

learning features from the data [19,20]. Plant- 

disease detection can be accomplished using a deep- 

learning model [21–23]. Deep learning also has 

some drawbacks, as it requires large amounts of 

data to train the network. If an available dataset 

does not contain enough images, performance is 

worse. Transfer learning has several advantages; for 

example, it does not needs a large amount of data to 

train the network. Transfer learning improves 

learning a new task through knowledge transfer 

from a similar task that had already been learned. 

Many stud- ies used transfer learning in their 

disease-detection approach [24–27]. The benefits of 

using transfer learning are a decrease in training 

time, generalization error, and computational cost of 

building a DL model [28]. In this work, we use 

different DL models to identify plant diseases. 

The inception module can extract more specific 

and relevant features as it allows for simultaneous 

multilevel feature extraction. We replaced the 

standard convolution of an inception block with 

depthwise separable convolution to reduce the 

parameter number. Multiple feature extraction 

improves the performance of the model. In a 

residual network, it has a shortcut connection 

that basically feeds the previous layer output to 

the next layer, which strengthens features and 

improves accuracy. To evaluate performance on a 

lightweight memory-efficient interface, the 

MobileNet model is used. MobileNetV2 archi- 

tecture can achieve high accuracy rates while 

keeping parameter number and computation as low 

as possible. According to [29], network depth, 

width, and resolution can lead to better performance 

accuracy with fewer parameters. We also used this 

EfficientNet model to identify diseases in plant and 

evaluated its performance. In the implemented DL 

archi- tecture, we used different batch sizes of 32– 

180 to evaluate performance. Different dropout 

values and learning rates were also used to examine 

performance. Several epochs were used to run the 

model. The evaluation showed that the implemented 

deep CNN achieved impressive results and better 

performance in comparison with those of state-of- 

the-art machine-learning techniques.The main 

contributions of the paper are as follows: 

Different convolutional-neural-network (CNN) 

architectures such as InceptionV3, 

InceptionResNetV2, MobileNetV2, and 

EfficientNetB0 are implemented to  diagnose 

plant diseases on the basis of healthy- and 

diseased-leaf images. 

In InceptionV3 and  InceptionResNetV2, 

standard convolution was replaced with depthwise 

separable convolution, which reduced the number 

of parameters by a large margin while achieving 

the same performance-accuracy level. 
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The implemented InceptionV3 and 

InceptionResNetV2 use fewer parameters and are 

faster than the standard InceptionV3 and 

InceptionResNetV2 architectures. 

A transfer-learning-based CNN was applied on a 

MobileNetV2 and an EfficientNetB0 model. In 

each model, we froze the layer weight before the 

fully connected layer and removed all layers after 

that. We added a stack of an activation layer, 

batch- normalization layer, and dense layer. After 

each batch-normalization layer, we used  a 

dropout layer with different dropout  values, 

which prevents the architecture from overfitting. 

Since a large number of features were there, we 

used the L1 and L2 regularization techniques in the 

dense layer of all models, which simplified the 

models. We finetuned the network with different 

parameters to achieve optimal results. We 

performed extensive testing by adjusting the 

different parameters. We used different batch 

sizes in the range of 32–180, and  different 

dropout values in the range of 0.2– 

0.8. To optimize the model, we tested it with 

different learning rates in the range of 0.01– 

0.0001. The models were trained with different 

epochs. 

To examine the robustness of the model,  we 

used three formats of images, namely, color, 

segmented, and grayscale images. 

We compared the performance of the 

implemented models with that of other deep- 

learning models and state-of-the-art machine- 

learning techniques. Results showed that the 

implemented model performed better in terms of 

both accuracy and required training time. 

This paper is organized as follows. Section 2 

illustrates the literature related to the detection of 

plant diseases. Section 3 presents the CNN 

models and the details of the  datasets that are 

used in the experiments, along with their class 

and labels. Section 4 presents the results and 

performance of the models on the basis of their 

ability to predict the correct class among 38 

different classes. Section 5 offers a discussion, and 

outlines the study’s limitations and future 

directions towards the development and 

enhancement of the system Section 6 concludes 

the work. 

II. RELATED WORK 

The implementation of proper techniques to 

identify healthy and diseased leaves helps in 

controlling crop loss and increasing productivity. 

This section comprises different existing machine- 

learning techniques for the identification of plant 

diseases. 

1) Shape- and Texture-Based Identification 

In [30], the authors identified diseases using 

tomato-leaf images. They used different geometric 

and histogram-based features from segmented 

diseased portions and applied an SVM classifier 

with different kernels for classification. S.Kaur et 

al. [31] identified three different soybean diseases 

using different color and texture features. In [32] P 

Babu et al. used a feed-forward neural network and 

backpropagation to identify plant leaves and their 

diseases. S. S. Chouhan et al. [33] used a bacterial- 

foraging-optimization-based radial-basis- function 

neural network (BRBFNN) for the identification 

of leaves and fungal diseases in plants. In their 

approaches, they used a region-growing algorithm 

to extract features from a leaf on the basis of seed 

points having similar attributes. The bacterial- 

foraging optimization technique is used to speed up 

a network and improve classification accuracy. 

2) Deep-Learning-Based Identification 

Mohanty et al. [24] used AlexNet and GoogleNet 

CNN architectures in the identifica- tion of 26 

different plant diseases. Ferentinos et al. [25] used 

different CNN architectures to identify 58 different 

plant diseases, achieving high levels of 

classification accuracy. In their approach, they also 

tested the CNN architecture with real-time images. 

Sladojevic et al. [26] designed a DL architecture to 

identify 13 different plant diseases. They used the 

Caffe DL framework to perform CNN training. 

Kamilaris et al. [34] exhaustively researched 

different DL approaches and their drawbacks in the 

field of agriculture. In [35], the authors proposed a 

nine-layer CNN model to identify plant diseases. 

For experimentation purposes, they used the 
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PlantVillage dataset and data-augmentation 

techniques to increase the data size, 

and analyzed performance. The authors reported 

better accuracy than that of a traditional machine- 

learning-based approach. 

Pretrained AlexNet and GoogleNet were used in 

[36] to detect 3 different soybean diseases from 

healthy-leaf images with modified hyperparameters 

such as minibatch size, max epoch, and bias 

learning rate. Six different pre-trained 

network(AlexNet, VGG16, VGG19, GoogLeNet, 

ResNet101 and DenseNet201) used by KR 

Aravind et al. [37] to identify 10  different 

diseases in plants, and they achieved the highest 

accuracy rate of 97.3% using GoogleNet. A 

pretrained VGG16 as the feature extractor and 

multiclass SVM were used in [38] to classify 

different eggplant diseases.  Different  color 

spaces (RGB, HSV, YCbCr, and grayscale) were 

used to evaluate performance; using  RGB 

images, the highest classification accuracy of 

99.4% was achieved. In [39], the authors classified 

maize- leaf diseases from healthy leaves using 

deep-forest techniques. In their approach, they 

varied the deep-forest hyperparameters regarding 

number of trees, forests, and grains,  and 

compared their results with those of traditional 

machine-learning models such as SVM, RF, LR, 

and KNN. Lee et al. compared different deep- 

learning architectures in the identification  of 

plant diseases [22]. To improve the accuracy of 

the model, Ghazi et al. used a transfer-learning- 

based approach on pretrained deep-learning 

models [40]. 

In [41], the authors used a shallow CNN with 

SVM and RF classifiers to classify three different 

types of plant diseases. In their work, they mainly 

compared their results with those of deep- 

learning methods and showed that classification 

using SVM and RF classifiers with extracted 

features from the shallow CNN outperformed 

pretrained deep- learning models. A self-attention 

convolutional neural network (SACNN) was used 

in [42] to identify several crop diseases. To 

examine the robustness of the model, the authors 

added different noise levels in the test-image set. 

Oyewola et al. [43] identified 5 different cassava- 

plant diseases using plain convolu- tional neural 

network (PCNN) and deep residual network 

(DRNN), and found that DRNN outperformed 

PCNN by a margin of 9.25%. Ramacharan et al. 

[4] used a transfer-learning approach in the 

identification of three diseases and two pest- 

damage types in cassava plants. The authors then 

extended their work on the identification of cassava 

plant diseases using a smartphone-based CNN 

model and achieved accuracy of 80.6% [44]. 

Table 1. Summary of related work on plant- 

disease detection. 
 

 

A NASNet-based deep CNN architecture was 

used in [45] to identify leaf diseases  in plants, 

and an accuracy rate of 93.82% was achieved. 

Rice- and maize-leaf diseases were identified by 

Chen et al. [2] using the INC-VGGN method. In 

their approach, they replaced the last 

convolutional layer of VGG19 with two inception 

layers and one global average pooling layer. A 

shallow CNN (SCNN) was used by Yang Li et al. 

[41] in the identification of maize, apple, and 

grape diseases. First, they extracted CNN features 

and classified them using SVM and  RF 

classifiers. Sethy et al. [1] used different deep- 

learning models to extract features and classify 

them using an SVM classifier. Using ResNet50 

with SVM, they achieved the  highest 

performance accuracy. A VGG16, ResNet, and 

DenseNet model was used by Yafeng Zhao et al. 
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[46] to identify plant diseases from the plant 

village dataset. To increase the dataset size, they 

used a double generative adversarial network 

(DoubleGAN), which improved the performance 

results. A summary of the related work on plant- 

disease identification based on leaf images is 

shown in Table 1. 

III. MATERIALS AND METHODS 

1) Convolutional-Neural-Network Models 

Interest in CNNs has recently surged, and DL is the 

most popular architecture because DL models can 

learn relevant features from input images at 

different convolutional levels similar, to the 

function of the human brain. DL can solve 

complex problems particularly well and quickly 

with high classification accuracy and a lower error 

rate [47]. The DL model is composed of different 

components (convolutional, pooling layer, and 

fully connected layers, and activation functions). 

Table 2. Comparison among different CNN 

architectures regarding layer number and parameter 

size. 

 

Table 2 shows the number of layers and parameter 

sizes of different CNN architec- tures. AlexNet has 

a layer size of 8 and 60 millions parameters, 

whereas VGGNet-16 and GoogleNet have 

parameter sizes of 138 and 7 million, respectively. 

The layers in those two models are 16 and 27. The 

layers in ResNet-152 are 152, and the parameter size 

is 50 million. InceptionV3, MobileNetV1, and 

MobileNetV2 have a parameter size of 27, 4.2, and 

3.37 mil- lion, respectively. In our work, we used 

the InceptionV3, InceptionResNetV2, 

MobileNetV2, and EfficientNetB0 architectures to 

identify different plant diseases using the leaves of 

different disease-affected plants. We used these 

models because their parameter size is optimal in 

comparison with that of other architectures. During 

implementation, we used a pretrained weight based 

on the ImageNet Large-Scale Visual Recognition 

(ILSVRC) [48] dataset. 

(a) MobileNetV2 
 

( b ) Modified block of InceptionV3. 
 

 

 
Figure 1. Basic architectures of implemented DL models. 

Convolutional neural networks became familiar 

in machine vision since the AlexNet model was 

popularized in DL architecture. The development 

of the Inception model was important in the field 

of machine vision. Inception is a  simple  and 

more powerful DL network with sparsely 
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connected filters, which can replace fully 

connected network architectures, especially inside 

convolutional layers, as shown in Figure 1b. The 

Inception model’s computational efficiency and 

number of used parameters are much lower in 

comparison with those of other models such as 

AlexNet and VGGNet. An inception layer 

consists of differently dized convolutional layers 

(e.g., 1 × 1, 3 × 3, and n × n convolutional layers) 

and pooling layers with all outputs integrated 

together and propagating to the input of the next 

layer. Instead of using standard convolution  in 

the inception block, we used depthwise separable 

convolution. Tables 3 and 4 show the required 

parameters in standard convolution  and 

depthwise separable convolution, respectively. 

The number of parameters required in depthwise 

separable convolution is much less than that of 

standard convolution. 

Table 3. Required parameters using standard 

convolution in the Inception block. 
 

 

Table 4. Required parameters using depthwise 

separable convolution in the Inception block. 
 

 

The InceptionResNetV2 architecture is the 

combination of recent deep-learning mod- els: 

residual connection and the Inception architecture 

[49]. This hybrid deep-learning model has the 

advantages of a residual network and retains the 

unique characteristics of the multiconvolutional 

core of the Inception network. In  [50],  the 

authors showed that residual connections are 

implicit approaches for training very deep 

architectures. This improved version of the 

Inception architecture significantly improved 

performance and accelerated the model. Figure 2 

shows the basic block diagram of 

InceptionResNetV2. 
 

 

Figure 2: Basic block diagram of InceptionResNetV2 

model. 

InceptionResNetV2 consists of three inception 

blocks. Figure 3a shows the modified 

InceptionResNet-A block where the inception 

module uses parallel structure to extract the 

features. The 3 × 3 standard convolution was 

replaced by 3 × 3 depthwise separable 

convolution. Figure 3b represents the modified 

InceptionResNet-B block, where the 7 × 7 standard 

convolutional structure of inception model was 

replaced by 7 × 7 depthwise separable 

convolution. 
 
 

( a ) 
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( b ) 

Figure 3. (a) Modified structures of InceptionResnet- 

A. (b) Structures of InceptionResnet-B of 

InceptionResNetV2 model. 

In the InceptionResNet-C block, the 3 × 3 

convolutional structure was replaced by 

successive 3 × 1 and 1 × 3, as shown in Figure 4. 

By replacing the original convolutional kernel 

with multiple smaller convolutional kernels, this 

model effectively reduced compu- tational 

complexity. An increase in the number of 

convolutional layers and the deepening of the 

network improved performance accuracy. 

 

Figure 4. Structures of InceptionResNet-C in 

InceptionResNetV2 

The main intention behind the use of MobileNetV2 

architecture is the convolutional layer, which is 

quite expensive in normal convolutions in 

comparison with in MobileNetV2. To improve 

efficiency, depthwise separable convolution is used 

in the MobileNetV2 archi- tecture [51,52]. 

Depthwise convolution is independently performed 

for each input channel. The blocks of MobileNetV2 

are shown in Figure 1a. The first layer is called the 

expansion layer of 1 × 1 convolution, and its 

purpose is to expand the number of channels in 

the data. Next is the projection layer. In this layer, a 

high number of dimensions is reduced to a smaller 

number. Except for the projection layer, each layer 

comprises a batch-normalization function and 

activation function ReLU. In the MobileNetV2 

architecture, there is one residual connection 

between input and output layers. The residual 

network tries to learn already learned features; those 

that are not useful in decision making are discarded. 

This architecture can reduce the number of 

computations and of parameters. The MobileNetV2 

architecture consists of 17 building blocks in a row 

followed by a 1 × 1 convolutional layer, global 

average pooling layer, and classification layer. 

A deep-learning architecture aims to achieve 

better performance accuracy and ef- ficiency with 

smaller models. Unlike other state-of-the-art 

deep=learning models, the EfficientNet 

architecture is a compound scaling method that 

uses a compound coefficient to uniformly scale 

network width, depth, and resolution [29]. 

EfficientNet consists of 8 different models from 

B0 to B7. Instead of using the ReLU activation 

function, EfficientNet uses a new activation 

function, swish activation. EfficientNet uses 

inverted bottleneck convolution, which was first 

introduced in the MobileNetV2 model, which 

consists of a layer that first expands the network 

and then compresses the channels [52]. This 

archi- tecture reduces computation by a factor of f 

2 as compared to normal convolution, where f is 

the filter size. The authors in [29] showed that 

EfficientNetB0 is the simplest of all 8 models and 

uses fewer parameters. So, in our experiment, we 

directly used EfficientNetB0 to evaluate 

performance. Figure 5 shows the basic block 

diagram of EfficientNetB0. 
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Figure 5. Basic block diagram of EfficientNet model. 

1) Transfer-Learning Approach 

In deep learning, transfer learning is the reuse of a 

pretrained network on a new task. Transfer learning 

is very popular in deep learning because it can train 

the network with a small amount of data and high 

accuracy. In transfer learning, a machine exploits 

knowledge gained from a previous task to improve 

generalization about another. In transfer learning, 

the last few layers of the trained network are 

replaced with new layers, such as a fully connected 

layer and softmax classification layer, with number 

of classes, which is 38 in our paper. In each model, 

we unfroze the layer and added a stack of one 

activation layer, one batch-normalization layer, and 

one dropout layer. All models were tested with 

different dropout values, learning rates, and batch 

sizes. The input size used in MobileNetV2 and 

EfficientnetB0 is 224 × 224. 

2) Dataset 

For training and testing purposes, we used the 

standard open-access PlantVillage dataset [53], 

which consists of 54,305 numbers of healthy- and 

infected-plant leaves. De- tailed database 

information, the number of classes and images in 

each class, their com- mon and scientific names, 

and the disease-causing viruses are shown in 

Tables 5 and 6. The database contains  38 

different classes of 14 different plant species with 

healthy- and disease-affected-leaf images. All 

images were captured in laboratory conditions. 

Figure 6 shows some sample leaf images from 

the PlantVillage datasets [53]. 

In our experiment, we used three different formats 

of PlantVillage datasets. First, we ran the 

experiment with colored leaf images, and then with 

segmented leaf images of the same dataset. In the 

segmented images, the background was smoothed, 

so that it could provide more meaningful 

information that would be easier to analyze. Lastly, 

we used grayscale images of the same dataset to 

evaluate the performance of the implemented 

methods. All leaf images were divided into two 

sets, a training set and the testing set. To evaluate 

performance, we split leaf images into three 

different sets, namely 80–20 (80% training images 

and 20% testing images), 70–30 (70% training 

images and 30% testing images), and 60–40 (60% 

training images and 40% testing images). 

Table 5. Detailed description of PlantVillage dataset 

with relative information. 
 

 

Table 6. Detailed description of PlantVillage 

Dataset with relative information. 
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Figure 6. Sample images of color, grayscale and 

segmented version of PlantVillage image dataset. 

IV. RESULTS 

The implemented CNN architectures, as 

described in the previous section, used the 

parameters in Table 7. EfficientNetB0 achieved 

the best accuracy in comparison with that of 

InceptionV3, MobileNetV2, and 

InceptionResNetV2. To   evaluate   performance, 

we used different parameters, for example, 

performance accuracy, F1 score, precision, recall, 

training loss, and time required per epoch. As in our 

experiment, we used three different representations 

(i.e., color, grayscale, segmented) of PlantVillage 

image data, which showed different performance 

metrics in all cases. The color-image dataset 

performed better than those with grayscale and 

segmented images; the same number of CNN 

network parameters was maintained in all cases. 

Figure 7a–c shows the graphs for testing the 

accuracy, loss, and F1-score regarding the number 

of epochs for the implemented models. Figure 7d 

represents the accuracy graph of the 

InceptionResnetV2 model with different training 

and testing split images. A summary of the 

performance comparisons of the implemented 

models based on testing accuracy and testing loss is 

represented in Table 8. The performance metrics 

that are considered in our proposed work are as 

follows. 

• Performance accuracy: the total number of 

correctly classified images to the  total 

number of images. 

• Loss function: how well the architecture 

models the data. 

• Precision: the ratio of the number of correctly 

predicted observations (true positives) to the 

total number of positive predictions (true 

positives + false positives). 

• Recall: the ratio of correctly predicted 

observations (true positives) to all observations 

in that class (true positives + false negatives). 

• F1 score: the harmonic mean between 

precision and recall. 

Time requirement (in sec) per epoch for training 

each DL model. 

Table 7. Parameters used in CNN for training. 
 

 

Table 8. Performance comparison of different DL 

architectures. 
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To avoid overfitting, we phasewise divided the 

dataset into different training and testing ratios. In 

the case of 80% of training and 20% of testing 

image data, we achieved an accuracy of 98.42% in 

InceptionV3, 99.11% in InceptionResNetV2, 

97.02% in MobilenetV2, and 99.56% in 

EfficientNetB0 for color images. After splitting 

the dataset into different training and testing 

ratios, there was not much variation in the 

accuracy of the models. Hence, they did  not 

suffer from the problem of overfitting.The 

accuracy of all models for different image types 

with loss and number of epochs are shown in 

Table 9. Table 10 presents the precision, recall, 

and F1 score of the implemented models on 

splitting the dataset into 80–20% training and 

testing ratios. EffcientNetB0 had a  precision 

value of 0.9953, recall of 0.9971, and F1 score of 

0.9961, which were higher than those of the other 

models. 

Table 9. Accuracy and loss of  implemented 

models regarding different image types along with 

different train-test split ratios. 
 

 

 

 

 
Table 10. Precision, recall, and F1 score of 

implemented models. 
 

 
 

Figure 7. (a) Performance accuracy of 

implemented model. (b) Performance loss of 

implemented model. (c) F1 score of InceptionV3. 

(d) Accuracy of InceptionResNetV2 grouped by 

training. 

Table 8 indicates that the implemented techniques 

achieved better performance in terms of the 

combination of accuracy and average time per 

epoch in comparison with that of other 

implemented techniques. The highest successful 
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classification accuracy, obtained by 

EfficientNetB0, was 99.56%, and training time was 

much less as compared with that of the 

InceptionV3, InceptionResNetV2, and 

MobileNetV2 architectures. The decrease in time 

per epoch was because the number of parameters in 

these models was quite smaller than that of other 

existing models. A comparison between the number 

of parameters used in different models is 

highlighted in Table 1. The novelty of the 

implemented model lies in the fact that we used 

depthwise separable convolution, which reduces the 

network parameters. We considered different deep- 

learning models, such as a deep-learning model 

with an inception layer, deep learning with a 

residual connection, deep learning with depthwise 

separable convolution, and deep-learning models 

with depth, width, and resolution. We finetuned the 

network parameters to achieve better performance 

accuracy with less time, as is shown in Table 8. 

The accuracy of the model with respect to the 

number of predictions in the Mo- bileNetV2 

architecture decreased to 91% if we used a dropout 

value of 0.8. Figure 8 shows performance accuracy 

with respect to the different dropout values used 

in the network. Figure 9 shows correctly classified 

results from the test image dataset with their 

predicted and source class. The predicted class 

was returned with the confidence of that class. 
 

Figure 8. Performance accuracy with different 

dropout values. 

 

 

 
Figure 9. Example of correct classification from test 

image set. 

V. DISCUSSION 

The early detection and identification of plant 

diseases using deep-learning techniques has recently 

made tremendous progress. Identification using 

traditional approaches heavily depends on some 

factors such as image enhancement, the 

segmentation of disease regions, and feature 

extraction. 

Our approach is based on the identification of 

diseases using a deep-learning-based transfer- 

learning approach. Instead of using standard 

convolution, we used depthwise separable 

convolution in the inception block, which reduced 

the number of parameters by a large margin. To 

use both the inception and the residual network 

connection layer, we used the InceptionResNetV2 

model. The model both has higher accuracy and 

requires less training time than the original 

architecture does, as the used parameters are much 

fewer. To check the performance towards a 

smartphone-implemented lightweight model to 

assist in plant-disease diagnosis, we implemented 

the MobileNetV2 model. We also implemented 

EfficientNetB0, which considers depth, width, 

and resolution during convolution. 

Although the convolutional-neural-network-based 

deep-learning architecture achieved high success 
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rates in the detection of plant diseases, it  has 

some limitations, and there is a scope for future 

works. A little noise in the sample images led to 

misclassification by the deep-learning model 

[55,56]. Future work includes evaluating 

performance on noisy images and improving it. 

The dataset that we used to evaluate performance 

included 38 different diseases and healthy leaves. 

However, there is a need for the expansion of the 

dataset with wider land areas and more varieties 

of disease images. The dataset can also be 

improved with aerial photos, which are captured 

by drones. Another important issue is that the 

testing images are all from the same image 

dataset. Testing the network with real-time field 

images is an important challenging issue. The 

images that were  used to test performance were 

all captured in laboratory conditions. The images 

that we used for testing our model are part of the 

same dataset, the training dataset. There is a need 

for the development of an efficient machine- 

learning system that could identify diseases in 

real-time scenarios and from collected data from 

different datasets. Some researchers are working 

on this field; they tested their model with real- 

time images, and performance worsened by a huge 

margin—around 25–30%. Mohanty et al. [24] 

conducted an experiment where they tested their 

model with different images from those in the 

training dataset and achieved an accuracy rate of 

31.5%. Ferentinos et al. [25] measured performance 

with training images in laboratory conditions and 

tested the images in real-time conditions, and 

achieved an accuracy rate of 33%. To improve 

this, we need wide variety in databases, for 

example, with images taken in different lighting 

conditions, from different geograph- ical areas, 

and with cultivating conditions. In addition, we 

aim to carry this research forward by 

implementing it with a new deep-learning model, 

such as ACNet [57], and a transformer-based 

architecture, such as ViT [58] and the MLP Mixer 

[59] method, in plant disease identification, and 

evaluate its performance. 

VI. CONCLUSIONS 

There are many developed methods in the detection and 

classification of plant diseases using diseased leaves of 

plants. However, there is still no efficient and effective 

commercial solution that can be used to identify the 

diseases. In our work, we used four different DL models 

(InceptionV3, InceptionResnetV2, MobileNetV2, 

EfficientNetB0) for the detection of plant diseases 

using healthy- and diseased-leaf images of plants. To 

train and test the model, we used the standard 

PlantVillage dataset with 53,407 images, which were all 

captured in laboratory conditions. This dataset consists 

of 38 different classes of different healthy- and diseased- 

leaf images of 14 different species. After splitting the 

dataset into 80–20 (80% of whole data for training, 20% 

whole images for testing), we achieved the best 

accuracy rate of 99.56% in EfficientNetB0 model. On 

average, less time was required   to train the images in 

the MobileNetV2 and EfficientNetB0 architectures, and 

it took 565 and 545 s/epoch, respectively, on colored 

images. In comparison with other deep-learning 

approaches, the implemented deep-learning model has 

better predictive ability in terms of both accuracy and 

loss. The required time to train the model was much 

less than that of other machine-learning approaches. 

Moreover, the MobileNetV2 architecture is an 

optimized deep convolutional neural network that 

limits the parameter number and operations as much 

as possible, and can easily run on mobile devices. 
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