
International Journal on Applications in Engineering and Technology

Volume 9: Issue 5 : 2023, pp 16 – 24 www.aetsjournal.com ISSN (Online) : 2455 - 0523

--- -------------------------

16

Abstract— Posit number system has been used as an

alternative to IEEE floating-point number system in many

applications, especially the recent popular deep learning. Its

non-uniformed number distribution fits well with the data

distribution of deep learning and thus can speed up the

training process of deep learning. Among all the related

arithmetic operations, multiplication is one of the most

frequent operations used in applications. However, due to the

bit-width flexibility nature of posit numbers, the hardware

multiplier is usually designed with the maximum possible

mantissa bit-width. As the mantissa bit-width is not always the

maximum value, such multiplier design leads to high power

consumption especially when the mantissa bit-width is small.

In this brief, a power efficient posits multiplier architecture is

proposed. The mantissa multiplier is still designed for the

maximum possible bit-width; however, the whole multiplier is

divided into multiple smaller multipliers. Only the required

small multipliers are enabled at run-time. Those smaller

multipliers are controlled by the regime bit-width which can

be used to determine the mantissa bit-width. This design

technique is applied to 8-bit, 16-bit, and 32-bit posit formats in

this brief and an average of 16% power reduction can be

achieved with negligible area and timing overhead. designs of

FAs are also proposed in this article utilizing the proposed

XOR–XNOR circuit and available sum and carry modules.

The proposed FAs provide 2%–28.13% improvement in terms

of PDP than that of other architectures. To measure the driving

capabilities, the proposed FAs are embedded in 2-, 4-, and 8-

bit cascaded full adder (CFA) structures. Results show that

two of the proposed FAs provide the best performance for a

higher number of bits among all theFAs. The proposed

XOR–XNOR module is implemented with ten transistors, and

it has a symmetrical structure which makes the layout of the

proposed XOR–XNOR circuit less complex.

I. INTRODUCTION

ultipliers play an important role in today's

digital signal processing and various other

applications. In high performance systems

such as microprocessor, DSP etc. addition and

multiplication of two binary numbers is

fundamental and most often used arithmetic

operations.

II. COMPREHENSIVECASE STUDY

Multiple floating-point representations have been

used in computers over the years, although the

IEEE Standard for Floating-Point Arithmetic (IEEE

754) [2] is the most common implementation that

modern computing systems have adopted. Since it

was established in 1985, the standard has only been

revisited in 2008 (IEEE 754-2008) [3], but it

remains the main characteristics of the original to

keep compatibility with existing implementations

and it is not adopted by all computer systems.

However, multiple shortcomings have been

identified in the IEEE 754 standard, which are listed

below [4]: Different computers using the same

IEEE floating-point format are not required produce

the same results. When a computation does not fit

into the chosen number representation, the number

will be rounded. Even in the last revision of the

standard they introduce the round-to-nearest, ties

away from zero rounding schemes and provide

recommendations for computations reproducibility,

hardware designers are not coerced to implement

them. Therefore, identical computations can lead to

multiple results across different computing

platforms [5].Multiple bit patterns are used for

handling exceptions such as the Not-A-Number

(NaN) value, which indicates that a value is not

representable or undefined – for example dividing

by zero results in a NaN. The problem is that the

amount of bit patterns that represent NaNs may be

more than necessary, making hardware design more

complex and decreasing the available number of

 DESIGN OF POWER EFFICIENTPOSIT

MULTIPLIER

 MERLIN M.E.Student Department of el Electronics and Communication Engineering, Tagore

institute of Engineering and Technology, Attur 636112, MAIL ID : merlinece@gmail.com

HARITHA M.E, Assistant Professor, Department of el Electronics and Communication Engineering,

Tagore institute of Engineering and Technology, Attur 636112Mail: haritha.ece@tagoreiet.ac.in

M

International Journal on Applications in Engineering and Technology

Volume 9: Issue 5 : 2023, pp 16 – 24 www.aetsjournal.com ISSN (Online) : 2455 - 0523

--- -------------------------

17

exactly representable values. IEEE 754 makes use

of overflow – accepting ∞ or -∞ as a substitute for

large magnitude finite numbers – and underflow –

accepting 0 as a substitute for small magnitude

nonzero numbers. Thus, major problems can be

produced, as the above mentioned. Rounding is

performed on individual operands of every

calculation, so associativity and distributive

properties are not always held in floating-point

representation. The last revision of the standard tries

to solve this issue including the fused multiply–add

(FMA) operation. However, again this may not be

supported by all computer systems Multipliers play

an important role in today‘s digital signal

processing and various other applications. With

advances in technology, many researchers have

tried and are trying to design multipliers which offer

either of the following design targets – high speed,

low power consumption, regularity of layout and

hence less area or even combination of them in one

multiplier thus making them suitable for various

high speed, low power and compact VLSI

implementation. The common multiplication

method is ―add and shift‖ algorithm. In parallel

multipliers number of partial products to be added is

the main parameter that determines the performance

of the multiplier. To reduce the number of partial

products to be added, Modified Booth algorithm is

one of the most popular algorithms. To achieve

speed improvements Wallace Tree algorithm can be

used to reduce the number of sequential adding

stages. Further by combining both Modified Booth

algorithm and Wallace Tree technique we can see

advantage of both algorithms in one multiplier.

However with increasing parallelism, the amount of

shifts between the partial products and intermediate

sums to be added will increase which may result in

reduced speed, increase in silicon area due to

irregularity of structure and also increased power

consumption due to increase in interconnect

resulting from complex routing. On the other hand

―serial-parallel‖ multipliers compromise speed to

achieve better performance for area and power

consumption. The selection of a parallel or serial

multiplier actually depends on the nature of

application. In this lecture we introduce the

multiplication algorithms and architecture and

compare them in terms of speed, area, power and

combination of these metrics. Number systems and

computer arithmetic‘s are essential for designing

efficient hardware and software architecture. In

particular, real-valued computation constitutes a

crucial component in almost all forms of today‘s

computing systems from mobile devices to

servers. IEEE 754 is a prominent

standard established in 1985 for representing real-

valued numbers in a floating-point format. Despite

all its benefits, this number system suffers from a

number of weaknesses.Large size for small

numbers. The IEEE 754 standard defines two

specific formats for single- and double-precision

value representation using 32 and 64 bits,

respectively. Numerical computation within a

limited range of values in these formats may be

largely inefficient.For example, computing dot-

products of values within [-1, 1] requires only a tiny

fraction of all possible numbers represented in

either format.

● Limited precision. IEEE 754 has predefined

fixed-size partitions for an exponent and a

fraction. This may lead to a rounding error when

representing real numbers; therefore, some

floating-point numbers are not precise.

● Exceptional bit representations. IEEE 754

reserves several bits to represent NaNs, de

normals, positive/negative zero and infinity. In

addition to wasting some of the possible bit

patterns, considering all the reserved patterns for

computation adds further complexity to the

floating-point processors.

● Breaking algebraic rules. The floating-point

formats may break algebraic rules during

computation. For instance, a floating-point

addition is not always associative. The

expression (x+y)+z results in 1, where the

floating-point values are x = 1e30, y = -1e30 and

z = 1 is 1. Using the same values, x+(y+z) results

in 0.

● Producing inconsistent results. Consider two

vectors Q = (3.2e7, 1, –1, 8.0e7) and W = (4.0e7,

1, –1, –1.6e7). The dot product Q.W is equal to 0

in single-precision (i.e., the float type in C);

while, the right answer is 2. Using the floating-

point representation, 80 intermediate bits are

https://standards.ieee.org/standard/754-2019.html
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://web.stanford.edu/class/ee380/Abstracts/170201-slides.pdf
https://web.stanford.edu/class/ee380/Abstracts/170201-slides.pdf
https://web.stanford.edu/class/ee380/Abstracts/170201-slides.pdf
https://web.stanford.edu/class/ee380/Abstracts/170201-slides.pdf

International Journal on Applications in Engineering and Technology

Volume 9: Issue 5 : 2023, pp 16 – 24 www.aetsjournal.com ISSN (Online) : 2455 - 0523

--- -------------------------

18

necessary to produce the correct answer in the

double-precision format.

● Complex design and verification. Designing

an efficient floating-point unit could be time-

consuming due to the necessary components for

handling rounding, exception, NaNs, denormals,

mantissa alignment, etc. Moreover, verifying the

floating-point design is a significant task because

of dealing with numerous corner cases.

To overcome these challenges, various number

systems and data representation techniques have

been proposed to enhance or replace the floating-

point numbers. A few examples of such techniques

are Interval arithmetic, universal number

systems Type I, and Type II. The most recent

floating-point number system invented by John L.

Gustafson in 2017 is called posit that addresses

many of the above-mentioned problems. Most

machine implementations of real numbers rely on

floating-point arithmetic. The ease-of-use of

floating-point, which explains its popularity, hides

complex hardware whose behavior is specified by

the IEEE-754 standard. The posit number system

(described in details in [2]) is an emerging machine

representation of real numbers that aims at

replacing IEEE-754 floating-point. The first posit

claim is that floating-point is an inefficient

representation. When the exponent can be encoded

on only a few bits, the rest of the bits should be

used to extend the precision. The second claim,

adopted from Kulisch [3], is that the sum of many

products is a pervasive operation, justifying specific

hardware to compute it exactly. To this purpose, the

draft posit standard [4] mandates a quire, a variant

of the exact Kulisch accumulator [3] for the posit

number system. Most current evaluations of posits

in applications are performed through software

simulation [5], [6], [7], [8]. The C/C++ Soft Posit

library 1 (among others 2) implements the latest

posit standard and allows for direct comparison

with floating-point numbers in terms of accuracy.

However, the hardware cost of posits is not yet

completely known. Hardware posits adders and

multipliers have been written in HDL [9], [10] or

using Intel Open CL SDK compliant templatized

C++ operators [11]. Using posits as a storage format

by decoding/encoding from/to a large enough IEEE

floating-point format as also been studied in [5].

Posits have been evaluated on applications such as

machine learning [5],[6] or matrix multiply [7].

Among these works, only [5] is open-source and

partially supports the quire, but only for 8bit posits.

[11] and [9] are parametric designs but are not

open-source and do not support the quire. The

present work, although similar in spirit, refines the

architectures in [11], attempting to use the same

data path optimization tricks that are used in the

floating-point operators it compares to [12].

Conversely, [9] compares a posit implementation to

a floating- point implementation that is 3x larger

than the state-of-the-art. The present work improves

the implementation of posit hardware with respect

to all the previous works, and enables a comparison

with state-of-the-art floating-point. It is parametric,

open-source, and it is the first implementation to

include a standard-compliant, parametric quire. As

the quire is the posit incarnation of the exact Kulich

accumulator for IEEE floating-point, an

implementation of the latter is provided for good

measure.

Figure 1: Example of a posit number and its decimal value

Posit Format

Fig. 1 shows values for a 3-bit posit format with n

= 3 and es = 1. There are only two reserve

representations: 0 (all 0 bits) and ±∞ (1 followed by

all 0 bits). A total of 8 values may be represented

using 3 bits. A generic posit format consists of a

mandatory sign, one or multiple regime bits,

 multiple optional exponent bits, and multiple

optional fraction bits (Fig. 1). The sign bit is 0 for

positive numbers and 1 for negative ones. The

number of regime bits is dynamic following a

special encoding. After the sign bit , the regime

includes a run of 0 or 1, which is terminated by an

opposite bit (r̄) or at the end of the number format.

Similarly, the number of bits for the exponent and

fraction is dynamic. A posit number includes the

https://www.embedded.com/hardware-based-floating-point-design-flow/
http://www-math.mit.edu/~edelman/homepage/papers/pentiumbug.pdf
http://www-math.mit.edu/~edelman/homepage/papers/pentiumbug.pdf
http://www-math.mit.edu/~edelman/homepage/papers/pentiumbug.pdf
https://en.wikipedia.org/wiki/Interval_arithmetic
https://dl.acm.org/doi/10.14529/jsfi160203
https://dl.acm.org/doi/10.14529/jsfi160203
https://dl.acm.org/doi/10.14529/jsfi160203
https://www.crcpress.com/The-End-of-Error-Unum-Computing/Gustafson/p/book/9781482239867
https://ubiquity.acm.org/article.cfm?id=3001758
https://dl.acm.org/doi/10.14529/jsfi170206

International Journal on Applications in Engineering and Technology

Volume 9: Issue 5 : 2023, pp 16 – 24 www.aetsjournal.com ISSN (Online) : 2455 - 0523

--- -------------------------

19

exponent and fraction only if necessary. Let m be

the number of identical bits in the regime bits

(amber color). If the first bit is zero, the number of

zeros (m) represents a negative value (-m).

Otherwise, the number of ones minus one (m-1)

represents a positive value (m-1). The regime bits

realize a scale factor of used, where used = 2
2es

.

Exponent e is regarded as an unsigned integer to

realize another scale 2
e
. Unlike IEEE 754, posit

does not use bias for the exponent. Each exponent

may be up to a predefined number of bits (es). The

remaining bits after the regime and the exponent are

used for the fraction (f). Similar to IEEE 754, the

fraction includes a hidden bit, which is always 1 as

posit does not have any DE normal number.

Overall, an n-bit posit number (p) can represent the

following numbers. Posit number system is first

proposed in [1]. It is designed to be used as an

alternative to the conventional IEEE floating-point

formats [2] in many fields of applications [3], [4],

[5]. It has larger dynamic range than IEEE floating-

point format. As a result, a small bit-width posit

format can meet the numeric requirements of

applications while it brings many memory and

computation benefit. In addition, its non-uniformed

data distribution fits well with the data distribution

of some applications, such as deep learning. The 8-

bit or 16-bit posit formats are widely used in deep

learning systems The reason for usage of Posit

multiplier over IEEE 754 standard they are as

follows Unique Value Representation.

In the posit format, f(a) is always equal to f(b) if a

and b are equal, where f is a function. In the IEEE

754, the reciprocals of positive and negative zeros

are +∞, −∞, respectively.

Moreover, the negative zero equals positive zero.

This implies +∞ = -∞ which is not true. In a

floating-point comparison (a == b), the result is

always false if either a or b is NaN. This even holds

if a and b has the same bit representation. In posits,

however, a and b are equal if they use the same bit

patterns; otherwise, they are not equal. Moreover,

the result of an arithmetic operation would be the

same over different hardware systems. For instance,

in the case of the Q.W example at the beginning,

posit needs only 24 bits to generate the correct

result.

III. LITERATURE REVIEW

1) An approximate and iterative posit multiplier

architecture for FPGAs, 2021.

This paper presents the first approximate and

iterative posit multiplier architecture. Generally, as

more multiplier cores work in parallel at higher

frequency, greater speedup is achieved. Therefore,

the proposed multiplier design that is smaller and

faster than the previous posit multiplier design can

be effectively used in applications requiring a wide

dynamic range of posit arithmetic. In future work,

we will explore whether the approximate and

iterative approach can be applied to custom

hardware accelerators for a holomorphic encryption

scheme supporting approximate arithmetic .

2) A Posit Logarithm-Approximate Multiplier,

2021.

This paper aims to reduce such a gap by proposing

a Posit Logarithm-Approximate Multiplication

(PLAM) scheme to reduce posit multiplication

complexity. The experimental results show that

applying PLAM in DNN inference does not affect

accuracy. When compared to other posit hardware

solutions, the proposed implementation achieves

area, power, and delay reduction of 72.86%,

81.79%,

IV. EXISTING WORK

Figure 3.1 Posit Multiplier.

The general format of a posit number is shown in

Fig. 1. A posit number Posit (nb,es) is regime (rg),

exponent (exp), and mantissa (frac). The component

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html

International Journal on Applications in Engineering and Technology

Volume 9: Issue 5 : 2023, pp 16 – 24 www.aetsjournal.com ISSN (Online) : 2455 - 0523

--- -------------------------

20

bit-width is not constant. The regime bit-width

varies for different values. The exponent and the

mantissa will occupy the remaining bit positions

and they will not be included in the format when the

regime occupies all bit positions. The value of a

number represented in posits format is:

Value = (-1)
s
× useed

rg
× 2

exp
× (1 + frac)

Where used= 22
es

In hardware arithmetic unit design, the extraction

of components is not as straightforward as the

floating-point format. The circuit shown in Fig. 3

(except the grey module) is commonly used to

extract each component of a posit number [8], [9].

The number is complemented first if it is negative.

Then the regime part is first extracted. The regime

part is a series of ones (zeros) followed by a single

zero (one) bit. Therefore, a leading zero detector

(LZD) and a leading one detector (LOD)

are used to count the number of leading bits. If

leading ones are detected, rgequals to count - 1.

Otherwise, rgis –count and a complementer,

COMP, is needed to convert the positive count to a

negative rgvalue. In addition, the regime bit-width

shift_rgis also generated which iscount+1 so that

the regime can be removed.

1) Modified posit multiplier

The proposed system consists of conventional posit

multiplier and modified adder block. A posit

number Posit (nb, es) is defined with the total bit-

width nband the exponent bit-width es. It has four

components: sign (s), regime (rg), exponent (exp),

and mantissa (frac). The component bit-width is not

constant. The regime bit-width varies for different

values. The exponent and the mantissa will occupy

the remaining bit positions and they will not be

included in the format when the regime occupies all

bit positions. In parallel adders, carry output of each

full adder is given as a carry input to the next

higher-order state. Hence, these adders it is not

possible to produce carry and sum outputs of any

state unless a carry input is available for that state.

So, for computation to occur, the circuit has to wait

until the carry bit propagated to all states. This

induces carry propagation delay in the circuit. The

carry input at any stage of the adder is independent

of the carry bits generated at the independent stages.

Here the output of any stage is dependent only on

the bits which are added in the previous stages and

the carry input provided at the beginning stage.

Hence, the circuit at any stage does not have to wait

for the generation of carry-bit from the previous

stage and carry bit can be evaluated at any instant of

time. A carry-look ahead adder (CLA) or fast

adder is a type of electronics adder used in digital

logic. A carry-look ahead adder improves speed by

reducing the amount of time required to determine

carry bits. It can be contrasted with the simpler, but

usually slower, ripple-carry adder (RCA), for which

the carry bit is calculated alongside the sum bit, and

each stage must wait until the previous carry bit has

been calculated to begin calculating its own sum bit

and carry bit. The carry-look ahead adder calculates

one or more carry bits before the sum, which

reduces the wait time to calculate the result of the

larger-value bits of the adder. A LZD circuit is a

combinational logic block that determines the

number of leading zeros in the primary input word.

This LZD block is complex and slow, in general,

because its output is a function of all the input bits

which can contain from zero -bits (the number bits

in the single precision floating-point number

significant) to N-bits (the number of bits in the

quadruple precision floating-point numbers

significant) A N-bit LZD circuit is proposed in this

paper. The propagation delay, area and complexity

of a LZD block realized with this approach is less

than an implementation designed. It waits for the

result of the adder to count the number of its leading

zeros. A leading zero is any 0 digit that comes

before the first nonzero digit in a number string

in positional notation. Any zeroes appearing to the

left of the first non-zero digit (of any integer or

decimal) do not affect its value, and can be omitted

(or replaced with blanks) with no loss of

information. Therefore, the usual decimal notation

of integers does not use leading zeros except for

the zero itself, which would be denoted as an empty

string otherwise. However, in decimal

fractions strictly between −1 and 1, the leading

zeros digits between the decimal point and the first

nonzero digit are necessary for conveying the

magnitude of a number and cannot be omitted,

while trailing zeros – zeros occurring after the

https://en.wikipedia.org/wiki/Adder_(electronics)
https://en.wikipedia.org/wiki/Ripple-carry_adder

International Journal on Applications in Engineering and Technology

Volume 9: Issue 5 : 2023, pp 16 – 24 www.aetsjournal.com ISSN (Online) : 2455 - 0523

--- -------------------------

21

decimal point and after the last nonzero digit – can

be omitted without changing the meaning.

A leading-one detector is an electronic

circuit commonly found in central processing

units and especially their arithmetic logic

units (ALUs). It is used to detect whether the

leading bit in a computer word is 1 or 0.

Multiplication and addition are the frequently used

components in Digital Signal Processing (DSP)

applications. Data analysis shows that an average

40% multiplication and 60% addition operations

performed in DSP applications. Especially, Finite

Impulse Response (FIR), Fast Fourier Transform

(FFT) and Discrete Cosine Transform (DCT)

techniques need to be designed with an efficient

multiplier. But, as it is well- known fact that a

multiplier has always been a limiting factor in terms

of accuracy, speed and area. Design of Leading-One

Detector (LOD) is important as they are used for the

normalization process in a floating point

multiplication, logarithmic multiplication, and in

logarithmic converter. The LOD is used in

logarithmic converters to find the position of the

leading ‗one‘ bit in the integral and the fractional

parts a logarithm operation are determined with the

help of LOD. An efficient and low power LODs is a

demand for logarithmic converter to perform a DSP

operation. A LOD is used as a key component for

performing the shifting and normalization process

in the floating-point multiplication, floating-point

addition and also in binary logarithmic converters.

Research is going on to evolve various

combinatorial circuits in a constrained space with

minimum effort. Researchers have continuously

working to develop an efficient architecture for

LOD The reported LOD design are found to be

slower or hardware inefficient. No operations like

shifting-and counting method, bit-by-bit serial

evaluation circuits etc. make it possible to design

the efficient LOD. Further, an effective technique is

required to handle the problem of locating of the

leading-one bit with a fast, hardware efficient, and

low power LOD circuit. It motivates to explore new

approaches. Further, the implementation of an

efficient architecture of iterative logarithm

multiplier is also proposed by using the designed

LODs. A comparator compares two input voltages

and outputs a binary signal indicating which is

larger. If the non-inverting (+) input is greater than

the inverting (-) input, the output goes high. If the

inverting input is greater than the non-inverting, the

output goes low. A shift register is a group of flip-

flops, wherein all flip-flops have been inter-

connected in such a manner that a binary number

can be shifted both inside and outside these flip-

flops. In other words, a group of inter-connected

flip-flops, on which binary number or binary

information can be shifted both inside and outside

of these flip-flops, is called shift register. A shift

register is also a storage device, wherein binary data

or digital information is stored. This device is

designed in such a manner that its stored bits can be

shifted or transmitted from one flip-flop to another

flip-flop (i.e. shift registers are used for storing and

shifting of data (0 and 1) in a digital system). Thus,

a shift register is a kind of digital circuit, which

performs two basic functions i.e. data storing and

data shifting. Remember that shift registers are a

form of sequential logic circuits, which are being

extensively used. The storing capacity of a register

or its capacity to store data refers to the number of

digital data bits (0 and 1) which it can store or retain

inside it. As every stage of a flip-flop present in the

shift register reflects storage capacity of a bit (that

is every flip-flop of all the flip-flops existing on a

register can store just one bit) therefore, the number

of stages (flip-flops) in a register represents its

overall storing capacity. However, capacity of a

register to shift data from one flip-flop to another

flip-flop or from one stage to other stage existing

within it, or capacity of a register to let data enter

into it or let data to be ejected out of it, depends on

the use of clock pulses.

In short, a shift register is constructed through

binary storage elements (i.e. flip-flops) which are

wired or cascaded together in a manner that a bit

stored on one element can be shifted to the adjacent

element (if flip-flops are connected together in such

a way that output of one flip-flop is input for other

flip-flop, this process is called cascading of flip-

flops). However, it has to be remembered that all

storage registers present in a digital system can be

made to operate together via an input clock pulse or

shift pulse. Therefore, when a shift pulse is applied,

International Journal on Applications in Engineering and Technology

Volume 9: Issue 5 : 2023, pp 16 – 24 www.aetsjournal.com ISSN (Online) : 2455 - 0523

--- -------------------------

22

then as per needs, data present on shift register can

shift only to one-bit position at a time in a serial

manner right or leftward. As a result of this shifting

or moving feature just one-bit data at a time, shift

registers are widely used for carrying out functions

like counting, frequency dividing or arithmetic

operations etc. A binary shift is a binary operation

that consists of shifting all the digit of a binary

number either to the left or to the right by a fixed

amount. Binary shifts can be used to multiply a

number by a power of 2 (left shift) or to divide a

number by a power of 2 (right shift). A binary

left shift is used to multiply a binary number by

two. It consists of shifting all the binary digits to the

left by 1 digit and adding an extra digit at the end

with a value of 0.A shifter is a circuit that produces

an N-bit output based on an N-bit data input and

an M-bit control input, where the N output bits are

place-shifted copies of the input bits, shifted some

number of bits to the left or right as determined by

the control inputs. As an example, the function of

an 8-bit shifter capable of shifting one, two, or three

bits to the right or left. The control signals enable

several different functions: two bits (A1 and A0) to

determine how many bit positions to shift (0, 1, 2,

or 3); a fill signal (F) determines whether bits

vacated by shift operations receive a '1' or a '0'; a

rotate signal (R = '1' for rotate) determines whether

shifted-out bits are discarded or recaptured in

vacated bits; and a direction signal (D = '1' for right)

determines which direction the shift will take. When

bits are shifted left or right, some bits ―fall off‖ one

end of the shifter, and are simply discarded. New

bits must then be shifted in from the opposite side.

If no fill input signal exists, then 0's are shifted in

(otherwise, the fill input defines whether 1's or 0's

are shifted in to vacated bits). Shifters that offer a

rotate function recapture shifted-out bits in vacated

bits as shown in the lower row. Based on the shifter

functions shift, rotate, direction, fill, and number of

bits, many different shifter circuits could be

designed to operate on any number of inputs. As an

example of a simple shifter design, the truth table in

Fig. 2 shows input/output requirements for a four-

bit shifter that can shift or rotate an input value left

or right by one bit (R=0 for shift, R=1 for rotate,

D=0 for left, D=1 for right). Note the truth table

uses entered variables to compress the number of

rows that would otherwise be required. Shifters are

most often found in circuits that work with groups

of signals that together represent binary numbers,

where they are used to move data bits to new

locations on a data bus (i.e., the data bit in position

2 could be moved to position 7 by right-shifting five

times), or to perform simple multiplication and

division operations (exactly why a bit might want to

be moved from one location to another on a data

bus is left for a later topic). A shifter circuit can

multiply a number by 2, 4, or 8 simply by shifting

the number right by 1, 2, or 3 bits (and similarly, a

shifter can divide a number by 2, 4, or 8 by shifting

the number left by 1, 2, or 3 bits).

2) ADVANTAGES OF PROPOSED SYSTEM

Time consumption consuming under existing

method is 14.192ns. The power consumption is

70.427watts. The PDP of exiting posit multiplier

999.499984 JS
-1

. The proposed output gives

enhaced parameters with less power consumption

and time delay reduced

V. HARDWARE REQUIREMENTS

1) GENERAL

 VLSI stands for "Very Large Scale Integration".

This is the field which involves packing more and

more logic devices into smaller and smaller areas.

VLSI, circuits that would have taken board full of

space can now be put into a small space few

millimeters across! This has opened up a big

opportunity to do things that were not possible

before. VLSI circuits are everywhere .your

computer, your car, your brand new state-of-the-art

digital camera, the cell-phones, and what have you.

All this involves a lot of expertise on many fronts

within the same field, which we will look at in later

sections. VLSI has been around for a long time, but

as a side effect of advances in the world of

computers, there has been a dramatic proliferation

of tools that can be used to design VLSI circuits.

Alongside, obeying Moore's law, the capability of

an IC has increased exponentially over the years, in

terms of computation power, utilization of available

area, yield. The combined effect of these two

advances is that people can now put diverse

International Journal on Applications in Engineering and Technology

Volume 9: Issue 5 : 2023, pp 16 – 24 www.aetsjournal.com ISSN (Online) : 2455 - 0523

--- -------------------------

23

functionality into the IC's, opening up new frontiers.

Examples are embedded systems, where intelligent

devices are put inside everyday objects, and

ubiquitous computing where small computing

devices proliferate to such an extent that even the

shoes you wear may actually do something useful

like monitoring your heartbeats. Integrated circuit

(IC) technology is the enabling technology for a

whole host of innovative devices and systems that

have changed the way we live. Jack Kilby and

Robert Noyce received the 2000 Nobel Prize in

Physics for their invention of the integrated circuit;

without the integrated circuit, neither transistors nor

computers would be as important as they are today.

VLSI systems are much smaller and consume less

power than the discrete components used to build

electronic systems before the 1960s. Integration

allows us to build systems with many more

transistors, allowing much more computing power

to be applied to solving a problem. Integrated

circuits are also much easier to design and

manufacture and are more reliable than discrete

systems; that makes it possible to develop special-

purpose systems that are more efficient than

general-purpose computers for the task at hand.

VI. SOFTWARE REQUIREMENT

VERIFICATION TOOL

 Modalism 6.4c

SYNTHESIS TOOL

 Xilinx ISE 9.1

MODELISM

 Modalism is a verification and simulation

tool for VHDL, Verilog, System Verilog, and mixed

language designs. This lesson provides a brief

conceptual overview of the Model Sim simulation

environment. It is divided into four topics, which

you will learn more about in subsequent lessons.

 Basic simulation flow

 Project flow

 Multiple library flow

 Debugging tools

VII. RESULTS AND DISCUSSION

The proposed and existing designs are modeled in

Verilog HDL. These Verilog HDL models are

simulated/verified using the Xilinx ISE simulator.

1) Existing posit multiplier

Figure 1 RTL Schematic of existing posit multiplier

Figure 2 RTL Schematic existing posit multiplier

Figure 3 Simulation of existing posit multiplier

International Journal on Applications in Engineering and Technology

Volume 9: Issue 5 : 2023, pp 16 – 24 www.aetsjournal.com ISSN (Online) : 2455 - 0523

--- -------------------------

24

2) Proposed posit multiplier

Figure 4 RTL Schematic of existing posit multiplier

Figure 5 RTL Schematic of existing posit multiplier

VIII. CONCLUSION

The idea proposed in the paper is a 32-bit Posit

multiplier architecture with power efficiency.

Intrigued by the idea of reconstructing the

multiplier unit for mantissa into smaller parts,

because of the whole mantissa unit is not used

entirely all the time, we have built the hardware. To

limit the power consumption, we use only the

necessary potion of the multiplier. Our method is

evaluated for 16-bit multiplier, whereas we can

extend the work for 8-bit and 32-bit posit

multipliers using the same technique. For futuristic

purposes, more power reduction techniques for

multiplier architecture can be developed. The work

need not be necessarily limited to multipliers alone.

Future works can be deployed also for Posits Adder

or Posits Multiply Accumulate functions.

IX. REFERENCES

[1] J. L. Gustafson and I. Yonemoto, ―Beating floating point at its

own game: IEEE Standard for Floating-Point Arithmetic, IEEE

Standard 754-2008, Aug. 23, 2008, pp. 1–70.

[2] Z. Carmichael, S. H. F. Langroudi, C. Khazanov, J. Lillie, J. L.

Gustafson, and D. Kudithipudi, ―Deep positron: A deep neural

network using the posit number system,‖ CoRR, vol.

abs/1812.01762, pp. 1–6, Dec. 2018.

[3] J. Johnson, ―Rethinking floating point for deep learning,‖ CoRR,

vol. abs/1811.01721, pp. 1–8, Nov. 2018.

[4] M. Klöwer, P. D. Düben, and T. N. Palmer, ―Posits as an

alternative to floats for weather and climate models,‖ in Proc.

Conf. Next Gener. Arithmetic, Mar. 2019, pp. 1–8.

[5] R. Chaurasiya et al., ―Parameterized posit arithmetic hardware

generator,‖ in Proc. IEEE 36th Int. Conf. Comput. Design

(ICCD), Orlando, FL, USA, Oct. 2018, pp. 334–341.

[6] M. K. Jaiswal and H.-K. So, ―Architecture generator for type-3

unum posits adder/subtractor,‖ in Proc. IEEE Int. Symp. Circuits

Syst. (ISCAS), Florence, Italy, May 2018, pp. 1–5.

[7] H. Zhang, J. He and S.-B. Ko, ―Efficient posit multiply-

accumulate unit generator for deep learning applications,‖ in

Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), Sapporo, Japan,

May 2019, pp. 1–5.

[8] Podobas and S. Matsuoka, ―Hardware implementation of POSITs

and their application in FPGAs,‖ in Proc. IEEE Int. Parallel

Distrib. Process. Symp. Workshops (IPDPSW), Vancouver, BC,

Canada, May 2018, pp. 138–145.

[9] D. Booth, ―A signed binary multiplication technique,‖ Quart. J.

Mech. Appl. Math., vol. 4, no. 2, pp. 236–240, 1951.

[10] Z. Carmichael, H. F. Langroudi, C. Khazanov, J. Lillie, J. L.

Gustafson, and D. Kudithipudi, ―Performance-efficiency trade-

off of low-precision numerical formats in deep neural networks,‖

in Proc. Conf. Next Gener. Arithmetic, Mar. 2019, pp. 1–9

[11] Uguen, Yohann, Luc Forget, and Florent de Dinechin.

"Evaluating the hardware cost of the posit number system." 2019

29th International Conference on Field Programmable Logic and

Applications (FPL). IEEE, 2019.

[12] Murillo, R., Del Barrio, A. A., Botella, G., Kim, M. S., Kim,

H., &Bagherzadeh, N. (2021). PLAM: A posits logarithm-

approximate multiplier. IEEE Transactions on Emerging Topics

in Computing, 10(4), 2079-2085.

