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Abstract—      Posit number system has been used as an 

alternative to IEEE floating-point number system in many 

applications, especially the recent popular deep learning. Its 

non-uniformed number distribution fits well with the data 

distribution of deep learning and thus can speed up the 

training process of deep learning. Among all the related 

arithmetic operations, multiplication is one of the most 

frequent operations used in applications. However, due to the 

bit-width flexibility nature of posit numbers, the hardware 

multiplier is usually designed with the maximum possible 

mantissa bit-width. As the mantissa bit-width is not always the 

maximum value, such multiplier design leads to high power 

consumption especially when the mantissa bit-width is small. 

In this brief, a power efficient posits multiplier architecture is 

proposed. The mantissa multiplier is still designed for the 

maximum possible bit-width; however, the whole multiplier is 

divided into multiple smaller multipliers. Only the required 

small multipliers are enabled at run-time. Those smaller 

multipliers are controlled by the regime bit-width which can 

be used to determine the mantissa bit-width. This design 

technique is applied to 8-bit, 16-bit, and 32-bit posit formats in 

this brief and an average of 16% power reduction can be 

achieved with negligible area and timing overhead.  designs of 

FAs are also proposed in this article utilizing the proposed 

XOR–XNOR circuit and available sum and carry modules. 

The proposed FAs provide 2%–28.13% improvement in terms 

of PDP than that of other architectures. To measure the driving 

capabilities, the proposed FAs are embedded in 2-, 4-, and 8-

bit cascaded full adder (CFA) structures. Results show that 

two of the proposed FAs provide the best performance for a 

higher number   of   bits among all theFAs. The proposed 

XOR–XNOR module is implemented with ten transistors, and 

it has a symmetrical structure which makes the layout of the 

proposed XOR–XNOR circuit less complex. 

I. INTRODUCTION 

ultipliers play an important role in today's 

digital signal processing and various other 

applications. In high performance systems 

such as microprocessor, DSP etc. addition and 

 

   

multiplication of two binary numbers is 

fundamental and most often used arithmetic 

operations. 

II. COMPREHENSIVECASE STUDY 

Multiple floating-point representations have been 

used in computers over the years, although the 

IEEE Standard for Floating-Point Arithmetic (IEEE 

754) [2] is the most common implementation that 

modern computing systems have adopted. Since it 

was established in 1985, the standard has only been 

revisited in 2008 (IEEE 754-2008) [3], but it 

remains the main characteristics of the original to 

keep compatibility with existing implementations 

and it is not adopted by all computer systems. 

However, multiple shortcomings have been 

identified in the IEEE 754 standard, which are listed 

below [4]: Different computers using the same 

IEEE floating-point format are not required produce 

the same results. When a computation does not fit 

into the chosen number representation, the number 

will be rounded. Even in the last revision of the 

standard they introduce the round-to-nearest, ties 

away from zero rounding schemes and provide 

recommendations for computations reproducibility, 

hardware designers are not coerced to implement 

them. Therefore, identical computations can lead to 

multiple results across different computing 

platforms [5].Multiple bit patterns are used for 

handling exceptions such as the Not-A-Number 

(NaN) value, which indicates that a value is not 

representable or undefined – for example dividing 

by zero results in a NaN. The problem is that the 

amount of bit patterns that represent NaNs may be 

more than necessary, making hardware design more 

complex and decreasing the available number of 
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exactly representable values. IEEE 754 makes use 

of overflow – accepting ∞ or -∞ as a substitute for 

large magnitude finite numbers – and underflow – 

accepting 0 as a substitute for small magnitude 

nonzero numbers. Thus, major problems can be 

produced, as the above mentioned. Rounding is 

performed on individual operands of every 

calculation, so associativity and distributive 

properties are not always held in floating-point 

representation. The last revision of the standard tries 

to solve this issue including the fused multiply–add 

(FMA) operation. However, again this may not be 

supported by all computer systems Multipliers play 

an important role in today‘s digital signal 

processing and various other applications. With 

advances in technology, many researchers have 

tried and are trying to design multipliers which offer 

either of the following design targets – high speed, 

low power consumption, regularity of layout and 

hence less area or even combination of them in one 

multiplier thus making them suitable for various 

high speed, low power and compact VLSI 

implementation. The common multiplication 

method is ―add and shift‖ algorithm. In parallel 

multipliers number of partial products to be added is 

the main parameter that determines the performance 

of the multiplier. To reduce the number of partial 

products to be added, Modified Booth algorithm is 

one of the most popular algorithms. To achieve 

speed improvements Wallace Tree algorithm can be 

used to reduce the number of sequential adding 

stages. Further by combining both Modified Booth 

algorithm and Wallace Tree technique we can see 

advantage of both algorithms in one multiplier. 

However with increasing parallelism, the amount of 

shifts between the partial products and intermediate 

sums to be added will increase which may result in 

reduced speed, increase in silicon area due to 

irregularity of structure and also increased power 

consumption due to increase in interconnect 

resulting from complex routing. On the other hand 

―serial-parallel‖ multipliers compromise speed to 

achieve better performance for area and power 

consumption. The selection of a parallel or serial 

multiplier actually depends on the nature of 

application. In this lecture we introduce the 

multiplication algorithms and architecture and 

compare them in terms of speed, area, power and 

combination of these metrics. Number systems and 

computer arithmetic‘s are essential for designing 

efficient hardware and software architecture. In 

particular, real-valued computation constitutes a 

crucial component in almost all forms of today‘s 

computing systems from mobile devices to 

servers. IEEE 754 is a prominent 

standard established in 1985 for representing real-

valued numbers in a floating-point format. Despite 

all its benefits, this number system suffers from a 

number of weaknesses.Large size for small 

numbers. The IEEE 754 standard defines two 

specific formats for single- and double-precision 

value representation using 32 and 64 bits, 

respectively. Numerical computation within a 

limited range of values in these formats may be 

largely inefficient.For example, computing dot-

products of values within [-1, 1] requires only a tiny 

fraction of all possible numbers represented in 

either format. 

● Limited precision. IEEE 754 has predefined 

fixed-size partitions for an exponent and a 

fraction. This may lead to a rounding error when 

representing real numbers; therefore, some 

floating-point numbers are not precise. 

● Exceptional bit representations. IEEE 754 

reserves several bits to represent NaNs, de 

normals, positive/negative zero and infinity. In 

addition to wasting some of the possible bit 

patterns, considering all the reserved patterns for 

computation adds further complexity to the 

floating-point processors. 

● Breaking algebraic rules. The floating-point 

formats may break algebraic rules during 

computation. For instance, a floating-point 

addition is not always associative. The 

expression (x+y)+z results in 1, where the 

floating-point values are x = 1e30, y = -1e30 and 

z = 1 is 1. Using the same values, x+(y+z) results 

in 0. 

● Producing inconsistent results. Consider two 

vectors Q = (3.2e7, 1, –1, 8.0e7) and W = (4.0e7, 

1, –1, –1.6e7). The dot product Q.W is equal to 0 

in single-precision (i.e., the float type in C); 

while, the right answer is 2. Using the floating-

point representation, 80 intermediate bits are 

https://standards.ieee.org/standard/754-2019.html
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://web.stanford.edu/class/ee380/Abstracts/170201-slides.pdf
https://web.stanford.edu/class/ee380/Abstracts/170201-slides.pdf
https://web.stanford.edu/class/ee380/Abstracts/170201-slides.pdf
https://web.stanford.edu/class/ee380/Abstracts/170201-slides.pdf
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necessary to produce the correct answer in the 

double-precision format. 

● Complex design and verification. Designing 

an efficient floating-point unit could be time-

consuming due to the necessary components for 

handling rounding, exception, NaNs, denormals, 

mantissa alignment, etc. Moreover, verifying the 

floating-point design is a significant task because 

of dealing with numerous corner cases. 

To overcome these challenges, various number 

systems and data representation techniques have 

been proposed to enhance or replace the floating-

point numbers. A few examples of such techniques 

are Interval arithmetic,  universal number 

systems Type I, and Type II. The most recent 

floating-point number system invented by John L. 

Gustafson in 2017 is called posit that addresses 

many of the above-mentioned problems. Most 

machine implementations of real numbers rely on 

floating-point arithmetic. The ease-of-use of 

floating-point, which explains its popularity, hides 

complex hardware whose behavior is specified by 

the IEEE-754 standard. The posit number system 

(described in details in [2]) is an emerging machine 

representation of real numbers that aims at 

replacing IEEE-754 floating-point. The first posit 

claim is that floating-point is an inefficient 

representation. When the exponent can be encoded 

on only a few bits, the rest of the bits should be 

used to extend the precision. The second claim, 

adopted from Kulisch [3], is that the sum of many 

products is a pervasive operation, justifying specific 

hardware to compute it exactly. To this purpose, the 

draft posit standard [4] mandates a quire, a variant 

of the exact Kulisch accumulator [3] for the posit 

number system.  Most current evaluations of posits 

in applications are performed through software 

simulation [5], [6], [7], [8]. The C/C++ Soft Posit 

library 1 (among others 2) implements the latest 

posit standard and allows for direct comparison 

with floating-point numbers in terms of accuracy. 

However, the hardware cost of posits is not yet 

completely known. Hardware posits adders and 

multipliers have been written in HDL [9], [10] or 

using Intel Open CL SDK compliant templatized 

C++ operators [11]. Using posits as a storage format 

by decoding/encoding from/to a large enough IEEE 

floating-point format as also been studied in [5]. 

Posits have been evaluated on applications such as 

machine learning [5],[6] or matrix multiply [7]. 

Among these works, only [5] is open-source and 

partially supports the quire, but only for 8bit posits. 

[11] and [9] are parametric designs but are not 

open-source and do not support the quire. The 

present work, although similar in spirit, refines the 

architectures in [11], attempting to use the same 

data path optimization tricks that are used in the 

floating-point operators it compares to [12]. 

Conversely, [9] compares a posit implementation to 

a floating- point implementation that is 3x larger 

than the state-of-the-art. The present work improves 

the implementation of posit hardware with respect 

to all the previous works, and enables a comparison 

with state-of-the-art floating-point. It is parametric, 

open-source, and it is the first implementation to 

include a standard-compliant, parametric quire. As 

the quire is the posit incarnation of the exact Kulich 

accumulator for IEEE floating-point, an 

implementation of the latter is provided for good 

measure. 

 

Figure 1: Example of a posit number and its decimal value 

Posit Format 

Fig. 1 shows values for a 3-bit posit format with n 

= 3 and es = 1. There are only two reserve 

representations: 0 (all 0 bits) and ±∞ (1 followed by 

all 0 bits). A total of 8 values may be represented 

using 3 bits. A generic posit format consists of a 

mandatory sign, one or multiple  regime bits, 

 multiple optional exponent bits, and multiple 

optional fraction bits (Fig. 1). The sign bit is 0 for 

positive numbers and 1 for negative ones. The 

number of regime bits is dynamic following a 

special encoding. After the sign bit , the regime 

includes a run of 0 or 1, which is terminated by an 

opposite bit (r̄) or at the end of the number format. 

Similarly, the number of bits for the exponent and 

fraction is dynamic. A posit number includes the 

https://www.embedded.com/hardware-based-floating-point-design-flow/
http://www-math.mit.edu/~edelman/homepage/papers/pentiumbug.pdf
http://www-math.mit.edu/~edelman/homepage/papers/pentiumbug.pdf
http://www-math.mit.edu/~edelman/homepage/papers/pentiumbug.pdf
https://en.wikipedia.org/wiki/Interval_arithmetic
https://dl.acm.org/doi/10.14529/jsfi160203
https://dl.acm.org/doi/10.14529/jsfi160203
https://dl.acm.org/doi/10.14529/jsfi160203
https://www.crcpress.com/The-End-of-Error-Unum-Computing/Gustafson/p/book/9781482239867
https://ubiquity.acm.org/article.cfm?id=3001758
https://dl.acm.org/doi/10.14529/jsfi170206
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exponent and fraction only if necessary. Let m be 

the number of identical bits in the regime bits 

(amber color). If the first bit is zero, the number of 

zeros (m) represents a negative value (-m). 

Otherwise, the number of ones minus one (m-1) 

represents a positive value (m-1). The regime bits 

realize a scale factor of used, where used = 2
2es

. 

Exponent e is regarded as an unsigned integer to 

realize another scale 2
e
. Unlike IEEE 754, posit 

does not use bias for the exponent. Each exponent 

may be up to a predefined number of bits (es). The 

remaining bits after the regime and the exponent are 

used for the fraction (f). Similar to IEEE 754, the 

fraction includes a hidden bit, which is always 1 as 

posit does not have any DE normal number. 

Overall, an n-bit posit number (p) can represent the 

following numbers. Posit number system is first 

proposed in [1]. It is designed to be used as an 

alternative to the conventional IEEE floating-point 

formats [2] in many fields of applications [3], [4], 

[5]. It has larger dynamic range than IEEE floating-

point format. As a result, a small bit-width posit 

format can meet the numeric requirements of 

applications while it brings many memory and 

computation benefit. In addition, its non-uniformed 

data distribution fits well with the data distribution 

of some applications, such as deep learning. The 8-

bit or 16-bit posit formats are widely used in deep 

learning systems The reason for usage of Posit 

multiplier over IEEE 754 standard they are as 

follows Unique Value Representation.  

In the posit format, f(a) is always equal to f(b) if a 

and b are equal, where f is a function. In the IEEE 

754, the reciprocals of positive and negative zeros 

are +∞, −∞, respectively. 

Moreover, the negative zero equals positive zero. 

This implies +∞ = -∞ which is not true. In a 

floating-point comparison (a == b), the result is 

always false if either a or b is NaN. This even holds 

if a and b has the same bit representation. In posits, 

however, a and b are equal if they use the same bit 

patterns; otherwise, they are not equal. Moreover, 

the result of an arithmetic operation would be the 

same over different hardware systems. For instance, 

in the case of the Q.W example at the beginning, 

posit needs only 24 bits to generate the correct 

result.  

III. LITERATURE REVIEW 

1) An approximate and iterative posit multiplier 

architecture for FPGAs, 2021. 

This paper presents the first approximate and 

iterative posit multiplier architecture. Generally, as 

more multiplier cores work in parallel at higher 

frequency, greater speedup is achieved. Therefore, 

the proposed multiplier design that is smaller and 

faster than the previous posit multiplier design can 

be effectively used in applications requiring a wide 

dynamic range of posit arithmetic. In future work, 

we will explore whether the approximate and 

iterative approach can be applied to custom 

hardware accelerators for a holomorphic encryption 

scheme supporting approximate arithmetic . 

2) A Posit Logarithm-Approximate Multiplier, 

2021. 

This paper aims to reduce such a gap by proposing 

a Posit Logarithm-Approximate Multiplication 

(PLAM) scheme to reduce posit multiplication 

complexity. The experimental results show that 

applying PLAM in DNN inference does not affect 

accuracy. When compared to other posit hardware 

solutions, the proposed implementation achieves 

area, power, and delay reduction of 72.86%, 

81.79%, 

IV. EXISTING WORK 

 

Figure  3.1 Posit Multiplier. 

The general format of a posit number is shown in 

Fig. 1. A posit number Posit (nb,es) is   regime (rg), 

exponent (exp), and mantissa (frac). The component 

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
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bit-width is not constant. The regime bit-width 

varies for different values. The exponent and the 

mantissa will occupy the remaining bit positions 

and they will not be included in the format when the 

regime occupies all bit positions. The value of a 

number represented in posits format is: 

Value = (-1)
s
× useed

rg
× 2

exp
× (1 + frac) 

Where used= 22
es

 

In hardware arithmetic unit design, the extraction 

of components is not as straightforward as the 

floating-point format. The circuit shown in Fig. 3 

(except the grey module) is commonly used to 

extract each component of a posit number [8], [9]. 

The number is complemented first if it is negative. 

Then the regime part is first extracted. The regime 

part is a series of ones (zeros) followed by a single 

zero (one) bit. Therefore, a leading zero detector 

(LZD) and a leading one detector (LOD) 

are used to count the number of leading bits. If 

leading ones are detected, rgequals to count - 1. 

Otherwise, rgis –count and a complementer, 

COMP, is needed to convert the positive count to a 

negative rgvalue. In addition, the regime bit-width 

shift_rgis also generated which iscount+1 so that 

the regime can be removed. 

1) Modified posit multiplier  

The proposed system consists of conventional posit 

multiplier and modified adder block. A posit 

number Posit (nb, es) is defined with the total bit-

width nband the exponent bit-width es. It has four 

components: sign (s), regime (rg), exponent (exp), 

and mantissa (frac). The component bit-width is not 

constant. The regime bit-width varies for different 

values. The exponent and the mantissa will occupy 

the remaining bit positions and they will not be 

included in the format when the regime occupies all 

bit positions. In parallel adders, carry output of each 

full adder is given as a carry input to the next 

higher-order state. Hence, these adders it is not 

possible to produce carry and sum outputs of any 

state unless a carry input is available for that state. 

So, for computation to occur, the circuit has to wait 

until the carry bit propagated to all states. This 

induces carry propagation delay in the circuit. The 

carry input at any stage of the adder is independent 

of the carry bits generated at the independent stages. 

Here the output of any stage is dependent only on 

the bits which are added in the previous stages and 

the carry input provided at the beginning stage. 

Hence, the circuit at any stage does not have to wait 

for the generation of carry-bit from the previous 

stage and carry bit can be evaluated at any instant of 

time. A carry-look ahead adder (CLA) or fast 

adder is a type of electronics adder used in digital 

logic. A carry-look ahead adder improves speed by 

reducing the amount of time required to determine 

carry bits. It can be contrasted with the simpler, but 

usually slower, ripple-carry adder (RCA), for which 

the carry bit is calculated alongside the sum bit, and 

each stage must wait until the previous carry bit has 

been calculated to begin calculating its own sum bit 

and carry bit. The carry-look ahead adder calculates 

one or more carry bits before the sum, which 

reduces the wait time to calculate the result of the 

larger-value bits of the adder. A LZD circuit is a 

combinational logic block that determines the 

number of leading zeros in the primary input word. 

This LZD block is complex and slow, in general, 

because its output is a function of all the input bits 

which can contain from zero -bits (the number bits 

in the single precision floating-point number 

significant) to N-bits (the number of bits in the 

quadruple precision floating-point numbers 

significant) A N-bit LZD circuit is proposed in this 

paper. The propagation delay, area and complexity 

of a LZD block realized with this approach is less 

than an implementation designed. It waits for the 

result of the adder to count the number of its leading 

zeros. A leading zero is any 0 digit that comes 

before the first nonzero digit in a number string 

in positional notation. Any zeroes appearing to the 

left of the first non-zero digit (of any integer or 

decimal) do not affect its value, and can be omitted 

(or replaced with blanks) with no loss of 

information. Therefore, the usual decimal notation 

of integers does not use leading zeros except for 

the zero itself, which would be denoted as an empty 

string otherwise. However, in decimal 

fractions strictly between −1 and 1, the leading 

zeros digits between the decimal point and the first 

nonzero digit are necessary for conveying the 

magnitude of a number and cannot be omitted, 

while trailing zeros – zeros occurring after the 

https://en.wikipedia.org/wiki/Adder_(electronics)
https://en.wikipedia.org/wiki/Ripple-carry_adder
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decimal point and after the last nonzero digit – can 

be omitted without changing the meaning. 

A leading-one detector is an electronic 

circuit commonly found in central processing 

units and especially their arithmetic logic 

units (ALUs). It is used to detect whether the 

leading bit in a computer word is 1 or 0. 

Multiplication and addition are the frequently used 

components in Digital Signal Processing (DSP) 

applications. Data analysis shows that an average 

40% multiplication and 60% addition operations 

performed in DSP applications. Especially, Finite 

Impulse Response (FIR), Fast Fourier Transform 

(FFT) and Discrete Cosine Transform (DCT) 

techniques need to be designed with an efficient 

multiplier. But, as it is well- known fact that a 

multiplier has always been a limiting factor in terms 

of accuracy, speed and area. Design of Leading-One 

Detector (LOD) is important as they are used for the 

normalization process in a floating point 

multiplication, logarithmic multiplication, and in 

logarithmic converter. The LOD is used in 

logarithmic converters to find the position of the 

leading ‗one‘ bit in the integral and the fractional 

parts a logarithm operation are determined with the 

help of LOD. An efficient and low power LODs is a 

demand for logarithmic converter to perform a DSP 

operation. A LOD is used as a key component for 

performing the shifting and normalization process 

in the floating-point multiplication, floating-point 

addition and also in binary logarithmic converters. 

Research is going on to evolve various 

combinatorial circuits in a constrained space with 

minimum effort. Researchers have continuously 

working to develop an efficient architecture for 

LOD The reported LOD design are found to be 

slower or hardware inefficient. No operations like 

shifting-and counting method, bit-by-bit serial 

evaluation circuits etc. make it possible to design 

the efficient LOD. Further, an effective technique is 

required to handle the problem of locating of the 

leading-one bit with a fast, hardware efficient, and 

low power LOD circuit. It motivates to explore new 

approaches. Further, the implementation of an 

efficient architecture of iterative logarithm 

multiplier is also proposed by using the designed 

LODs. A comparator compares two input voltages 

and outputs a binary signal indicating which is 

larger. If the non-inverting (+) input is greater than 

the inverting (-) input, the output goes high. If the 

inverting input is greater than the non-inverting, the 

output goes low. A shift register is a group of flip-

flops, wherein all flip-flops have been inter-

connected in such a manner that a binary number 

can be shifted both inside and outside these flip-

flops. In other words, a group of inter-connected 

flip-flops, on which binary number or binary 

information can be shifted both inside and outside 

of these flip-flops, is called shift register. A shift 

register is also a storage device, wherein binary data 

or digital information is stored. This device is 

designed in such a manner that its stored bits can be 

shifted or transmitted from one flip-flop to another 

flip-flop (i.e. shift registers are used for storing and 

shifting of data (0 and 1) in a digital system). Thus, 

a shift register is a kind of digital circuit, which 

performs two basic functions i.e. data storing and 

data shifting. Remember that shift registers are a 

form of sequential logic circuits, which are being 

extensively used. The storing capacity of a register 

or its capacity to store data refers to the number of 

digital data bits (0 and 1) which it can store or retain 

inside it. As every stage of a flip-flop present in the 

shift register reflects storage capacity of a bit (that 

is every flip-flop of all the flip-flops existing on a 

register can store just one bit) therefore, the number 

of stages (flip-flops) in a register represents its 

overall storing capacity.  However, capacity of a 

register to shift data from one flip-flop to another 

flip-flop or from one stage to other stage existing 

within it, or capacity of a register to let data enter 

into it or let data to be ejected out of it, depends on 

the use of clock pulses. 

In short, a shift register is constructed through 

binary storage elements (i.e. flip-flops) which are 

wired or cascaded together in a manner that a bit 

stored on one element can be shifted to the adjacent 

element (if flip-flops are connected together in such 

a way that output of one flip-flop is input for other 

flip-flop, this process is called cascading of flip-

flops). However, it has to be remembered that all 

storage registers present in a digital system can be 

made to operate together via an input clock pulse or 

shift pulse. Therefore, when a shift pulse is applied, 
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then as per needs, data present on shift register can 

shift only to one-bit position at a time in a serial 

manner right or leftward. As a result of this shifting 

or moving feature just one-bit data at a time, shift 

registers are widely used for carrying out functions 

like counting, frequency dividing or arithmetic 

operations etc. A binary shift is a binary operation 

that consists of shifting all the digit of a binary 

number either to the left or to the right by a fixed 

amount. Binary shifts can be used to multiply a 

number by a power of 2 (left shift) or to divide a 

number by a power of 2 (right shift). A binary 

left shift is used to multiply a binary number by 

two. It consists of shifting all the binary digits to the 

left by 1 digit and adding an extra digit at the end 

with a value of 0.A shifter is a circuit that produces 

an N-bit output based on an N-bit data input and 

an M-bit control input, where the N output bits are 

place-shifted copies of the input bits, shifted some 

number of bits to the left or right as determined by 

the control inputs. As an example, the function of 

an 8-bit shifter capable of shifting one, two, or three 

bits to the right or left. The control signals enable 

several different functions: two bits (A1 and A0) to 

determine how many bit positions to shift (0, 1, 2, 

or 3); a fill signal (F) determines whether bits 

vacated by shift operations receive a '1' or a '0'; a 

rotate signal (R = '1' for rotate) determines whether 

shifted-out bits are discarded or recaptured in 

vacated bits; and a direction signal (D = '1' for right) 

determines which direction the shift will take. When 

bits are shifted left or right, some bits ―fall off‖ one 

end of the shifter, and are simply discarded. New 

bits must then be shifted in from the opposite side. 

If no fill input signal exists, then 0's are shifted in 

(otherwise, the fill input defines whether 1's or 0's 

are shifted in to vacated bits). Shifters that offer a 

rotate function recapture shifted-out bits in vacated 

bits as shown in the lower row. Based on the shifter 

functions shift, rotate, direction, fill, and number of 

bits, many different shifter circuits could be 

designed to operate on any number of inputs. As an 

example of a simple shifter design, the truth table in 

Fig. 2 shows input/output requirements for a four-

bit shifter that can shift or rotate an input value left 

or right by one bit (R=0 for shift, R=1 for rotate, 

D=0 for left, D=1 for right). Note the truth table 

uses entered variables to compress the number of 

rows that would otherwise be required. Shifters are 

most often found in circuits that work with groups 

of signals that together represent binary numbers, 

where they are used to move data bits to new 

locations on a data bus (i.e., the data bit in position 

2 could be moved to position 7 by right-shifting five 

times), or to perform simple multiplication and 

division operations (exactly why a bit might want to 

be moved from one location to another on a data 

bus is left for a later topic). A shifter circuit can 

multiply a number by 2, 4, or 8 simply by shifting 

the number right by 1, 2, or 3 bits (and similarly, a 

shifter can divide a number by 2, 4, or 8 by shifting 

the number left by 1, 2, or 3 bits). 

2)  ADVANTAGES OF PROPOSED SYSTEM 

Time consumption consuming under existing 

method is 14.192ns. The power consumption is 

70.427watts.  The PDP of exiting posit multiplier 

999.499984 JS
-1 

. The proposed output gives 

enhaced parameters with less power consumption 

and time delay reduced 

V. HARDWARE REQUIREMENTS  

1)  GENERAL 

 VLSI stands for "Very Large Scale Integration". 

This is the field which involves packing more and 

more logic devices into smaller and smaller areas. 

VLSI, circuits that would have taken board full of 

space can now be put into a small space few 

millimeters across! This has opened up a big 

opportunity to do things that were not possible 

before. VLSI circuits are everywhere .your 

computer, your car, your brand new state-of-the-art 

digital camera, the cell-phones, and what have you. 

All this involves a lot of expertise on many fronts 

within the same field, which we will look at in later 

sections. VLSI has been around for a long time, but 

as a side effect of advances in the world of 

computers, there has been a dramatic proliferation 

of tools that can be used to design VLSI circuits. 

Alongside, obeying Moore's law, the capability of 

an IC has increased exponentially over the years, in 

terms of computation power, utilization of available 

area, yield. The combined effect of these two 

advances is that people can now put diverse 
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functionality into the IC's, opening up new frontiers. 

Examples are embedded systems, where intelligent 

devices are put inside everyday objects, and 

ubiquitous computing where small computing 

devices proliferate to such an extent that even the 

shoes you wear may actually do something useful 

like monitoring your heartbeats. Integrated circuit 

(IC) technology is the enabling technology for a 

whole host of innovative devices  and systems that 

have changed the way we live. Jack Kilby and 

Robert Noyce received the 2000 Nobel Prize in 

Physics for their invention of the integrated circuit; 

without the integrated circuit, neither transistors nor 

computers would be as important as they are today. 

VLSI systems are much smaller and consume less 

power than the discrete components used to build 

electronic systems before the 1960s. Integration 

allows us to build systems with many more 

transistors, allowing much more computing power 

to be applied to solving a problem. Integrated 

circuits are also much easier to design and 

manufacture and are more reliable than discrete 

systems; that makes it possible to develop special-

purpose systems that are more efficient than 

general-purpose computers for the task at hand. 

VI. SOFTWARE REQUIREMENT 

VERIFICATION TOOL  

 Modalism 6.4c 

SYNTHESIS TOOL 

 Xilinx ISE 9.1 

MODELISM 

              Modalism is a verification and simulation 

tool for VHDL, Verilog, System Verilog, and mixed 

language designs. This lesson provides a brief 

conceptual overview of the Model Sim simulation 

environment. It is divided into four topics, which 

you will learn more about in subsequent lessons.  

 Basic simulation flow  

 Project flow   

 Multiple library flow   

 Debugging tools 

VII. RESULTS AND DISCUSSION 

The proposed and existing designs are modeled in 

Verilog HDL. These Verilog HDL models are 

simulated/verified using the Xilinx ISE simulator. 

1)  Existing posit multiplier 

 

Figure 1  RTL Schematic of existing posit multiplier 

 

Figure 2  RTL Schematic existing posit multiplier 

 

Figure 3  Simulation of existing posit multiplier 
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2)  Proposed posit multiplier 

 

Figure 4  RTL Schematic of existing posit multiplier 

 

Figure 5 RTL Schematic of existing posit multiplier 

VIII. CONCLUSION 

The idea proposed in the paper is a 32-bit Posit 

multiplier architecture with power efficiency. 

Intrigued by the idea of reconstructing the 

multiplier unit for mantissa into smaller parts, 

because of the whole mantissa unit is not used 

entirely all the time, we have built the hardware. To 

limit the power consumption, we use only the 

necessary potion of the multiplier. Our method is 

evaluated for 16-bit multiplier, whereas we can 

extend the work for 8-bit and 32-bit posit 

multipliers using the same technique. For futuristic 

purposes, more power reduction techniques for 

multiplier architecture can be developed. The work 

need not be necessarily limited to multipliers alone. 

Future works can be deployed also for Posits Adder 

or Posits Multiply Accumulate functions. 
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