
International Journal on Applications in Information and communication Engineering

Volume 10 : Issue 1 : January 2024, pp 6 – 14 www.aetsjournal.com ISSN (Online) : 2394 – 6237

-- --------------------------

6

Abstract— Recommender systems are a subclass of

information filtering systems. These systems are specialized

software components, which usually make part of a larger

software system, but can also be standalone tools. A

recommender system's main goal is to provide the user

software suggestions for items that can be useful. The

suggestions are related to different decision-making

mechanisms, different techniques, such as, what product to

buy, what movie to watch, or what vacation to reserve. In the

context of recommender systems, the general term "item"

refers to what the system is actually recommending to its

users. The paper presents the development and the

comparison of multiple recommendation systems, capable of

making item suggestions, based on user, item and user-item

interaction data, using different machine learning algorithms.

Also, the paper deals with finding different ways of using

machine learning models to create recommendation

systems, training, evaluating and comparing the different

methods in order to provide a general but accurate solution

for ranking prediction.

Keywords — recommendation systems, machine learning

algorithms, decision-making mechanisms, ranking

prediction.

I. INTRODUCTION

iven a system that has a huge amount of users

and a similar amount of content to present for

them, the filtering process becomes crucial. Nobody

can expect a user to search manually through

thousands or even hundreds of thousands of different

items, whether these are movies, products or news,

in order to find what he is looking for. Without

recommendations, the users would come in contact

only with the direct search result, that in the case of

a tremendous amount of items, would limit the

Palanisamy.M,

Faculty of Information Technology,

Dhanalakshmi Srinivasan Engineering College, Tamil Nadu,

India.

Lalithavani.K , Faculty of Information Technology,

Dhanalakshmi Srinivasan Engineering College, Tamil Nadu,

India.

Ramu.M

, Faculty of Information Technology, Dhanalakshmi

Srinivasan Engineering College, Tamil Nadu, India.

number of returned data to tens, maybe hundreds of

items if the user looks through multiple pages. Even

in the case of smaller e-commerce websites or news

sites, where items are categorized properly, the

number of items may exceed a user's ability to find

what he is looking for. Recommender systems

usually focus only on a unique type of item, for

example, videos, music, and with respect to their

design, their main recommendation method used to

make decisions and their graphical user interface

are all tailored to that specific type of item [1, 2].

Different users or groups of users receive various

suggestions because recommendations are usually

made by taking into account the unique properties

of the users. Non- personalized recommendations

are easier to create and can be found mainly in

magazines or newspapers [3]. Users may find some

specific items a system has to offer compelling, but

the problem is that they might never find out their

existence if the system contains too many items.

The goal of the recommender is to show the user a

new set of items and possibilities, which they would

not look up on their own. A significant amount of

world-leading companies are already using

recommender systems in their everyday operations

to make users spend more time or money on their

websites [4, 5, 6]. One of the main problems is that

most recommender systems are built by many

researchers and developers for performing

extremely well in a specific task. This means both a

huge time and financial investment for anyone who

is looking for such a system to integrate.

 The paper presents a solution that uses different

pre- trained machine learning models and traditional

approaches as well and applies them on a dataset in

order to provide such a recommender. The results

are compared in order to identify possible problems,

tradeoffs, shortcomings but also advantages these

systems can have. An online dataset was used in

ENHANCING USER EXPERIENCE THROUGH

MACHINE LEARNING-BASED RECOMMENDATION

SYSTEMS

PALANISAMY.M

, LALITHAVANI.K

, RAMU.M

G

International Journal on Applications in Information and communication Engineering

Volume 10 : Issue 1 : January 2024, pp 6 – 14 www.aetsjournal.com ISSN (Online) : 2394 – 6237

-- --------------------------

7

order to train different models both on the local

machine, using ML.NET and in the cloud with

Azure Learning Studio. Once the models have been

trained, the system should be able to recommend

different movies for users, by predicting what rating

the user would have given if he had already seen

that specific movie. The rest of the paper is

organized as follows: chapter II presents theoretical

information in the field, in chapter III describes the

proposed solutions, and chapter IV exposed some

future improvements and conclusions.

II. STATE OF THE ART

Nowadays artificial intelligence (AI), machine

learning (ML) and deep learning (DL) are trending

fields. These terms are frequently used as

alternatives for each other, however, this is not

always correct. It has to be mentioned that from all

these terms AI is the most general concept, ML

being just a subset of AI and DL making part of ML

[7]. The main objective of any ML algorithm is to

generalize beyond the training samples, to

understand and interpret data that it has never ‗seen‘

before with success. There are multiple techniques

of creating a recommender system, all based on

different aspects of the collected data and the

environment it is part of. Recommender systems

can be broken into three main categories [8]:

content-based filtering, collaborative filtering, and

hybrid systems. Collaborative filtering algorithms

are more often implemented than the others and

often lead to better predictive performance.

However, each technique has its advantages and

disadvantages that must be taken into consideration

before implementation [9].

A. Content-Based Filtering

The basic idea behind content-based filtering is

that each item has some features. Recommender

systems applies a content-based recommendation

approach analyze, a set of documents and/or

descriptions of items previously rated by the user,

and creates a model or profile of user interests

based on the features of the objects rated by that

user [10]. Users are associated with a set of

preferences related to item contents. A profile can

be created explicitly by the user or automatically

generated based upon his/her past actions. The

profile is a structured representation of user

interests, used to recommend new interesting items.

The recommendation process can be described as

comparing the attributes of the user profile with the

attributes of an item. The outcome is a relevance

score that represents how interested is the user in

that given item. If a user profile precisely models

user interests, it is of huge advantage for the

effectiveness of an information retrieval operation.

The content-based recommendation requires proper

techniques for representing the items and creating

the user profiles, along with some algorithm for

matching a user profile with an item's

representation. The use of content-based

recommendation has several advantages, like

independence from users, transparency, etc. As with

any technique, the content-based approach also has

some serious disadvantages, which must be taken

into consideration: limited content analysis or over-

specialization.

 Content-based recommender systems are present

in a variety of applications. LIBRA [11] uses a

naive Bayes text categorization algorithm for

recommending books by using product descriptions

gathered from the Amazon online store. Another

good example is Intimate [12], which creates movie

recommendations by applying text categorization

methods to learn from movie synopses collected

from IMDB. The user has to categorize a minimum

amount of films in order to get suggestions from the

system: terrible, bad, below average, above average,

good and excellent.

Recommenders are also present in news

suggestions, where DailyLearner has to be

mentioned. It keeps two user models, one for short-

term interests and one for long-term interests. The

short-term interest profile is based on nearest

neighbor text classification, while for long-term

interests a naïve Bayesian model is created.

A great web recommender is Letizia [13], which

was developed as a browser extension that creates a

model, tailored to the user. It builds from keywords

from the user's interests by following the user‘s

browsing. It is based on implicit observations to

learn the user‘s interests. By putting a page in the

International Journal on Applications in Information and communication Engineering

Volume 10 : Issue 1 : January 2024, pp 6 – 14 www.aetsjournal.com ISSN (Online) : 2394 – 6237

-- --------------------------

8

bookmarks shows a strong sign that the user is

interested in the content of that page.

 The research of "mainstream" recommender

systems conducted in the last 10-15 years shows

that the keyword-based representation for users and

items as well offer very good results, given that the

necessary amount of user interest is available. The

majority of content-based recommenders are

created as text classifiers using training sets of

documents, which represent user interests or the

lack of it. As a result, for achieving high accuracy

the training sets must contain a large amount of

data. The main problem with this approach is the

lack of "intelligence". If more complex

characteristics have to be taken into account,

keyword-based techniques meet their limits.

B. Collaborative Filtering

Collaborative filtering is realized by analyzing the

behavior of a group of users to make provide

suggestions to other users. The preferences of other

users influence the recommendation. The main idea

behind the collaborative filtering-based technique is

that if a person has the same opinion as another

person on a topic, then he is more likely to share

that other person's opinion on another topic than

that of a randomly chosen person. One of the

simplest examples would be if a user gets a movie

recommendation because his friend positively rated

that movie and they have a similar history in rating

movies. Using a matrix the set of interactions can be

visualized, where each entry (i, j) on the matrix

represents the interaction between the user ―i‖ and

item ―j‖. From another perspective, collaborative

filtering can be viewed as a generalization of

regression and classification.

Using collaborative filter-based recommendation

has several advantages compared to content-based

systems, like no domain knowledge necessary,

serendipity, affinity to nuances, benefits of large

user bases. Collaborative filtering- based

approaches also come with some drawbacks, like

complexity and expense, cold start (the system

needs enough information (user-item interactions)

to work properly). Collaborative filtering is

currently one of the most frequently used

approaches and usually provides better results than

content-based recommendations. A perfect example

would be YouTube's recommendation system. As it

is presented in [14], their system is composed of

two neural networks working together to provide

recommendations, one for candidate generation and

one for ranking.

C. Hybrid Systems

The simplest and most direct way to build a hybrid

recommender system is to take the independent

result of content and a collaborative-based

recommender system, then using a voting scheme

combine their predictions (fig. 1).

Figure 1 Hybrid recommender system's basic

architecture

[15] presents a method where the combination is

done by choosing items that correspond to the user's

profile and at the same time having positive ratings

from the user's neighbors. In [16], the technique

used compares users according to their content-

based profiles and uses a collaborative filtering

system where the generated similarity measures are

used. In [17], the predictions based on the content

are used to enrich the rating matrix, and then

collaborative filtering is run. In [18], item-based

collaborative filtering is run, but before that uses the

item's content descriptions and their associated

rating vectors to calculate the similarity between

them.

III. PROPOSED SYSTEM

In this paper, two different movie recommender

system designs are going to be presented, each

based on a different recommendation method. The

goal of the designed system is to predict what rating

would a user give to a movie and based on this

predicted rating to recommend movies.

The first type of system is implemented as an

executable console application using the .NET Core

and .NET Standard frameworks. It will be based on

matrix factorization to provide recommendations.

International Journal on Applications in Information and communication Engineering

Volume 10 : Issue 1 : January 2024, pp 6 – 14 www.aetsjournal.com ISSN (Online) : 2394 – 6237

-- --------------------------

9

This is going to be a pure collaborative filtering

approach.

The second approach will use Microsoft's cloud

service, namely Azure Machine Learning Studio

(AMLS). AMLS offers the possibility to create

different machine learning models and train them

directly in the cloud using Microsoft's immense

cloud infrastructure [19]. Once a model is

constructed it can be made available by exposing its

functionality through a REST API. The model will

use Microsoft's pre-trained hybrid model for the

recommendation, Matchbox recommender.

A. Prerequisites of a Recommender System

 The most important part of any machine learning

model is data [20]. Typically some information

about the users and items must be at disposal.

Content-based filtering is a good start if only

metadata is available about the users and items. If a

sufficiently high amount of user-item interactions

are accessible then more powerful collaborative or

hybrid recommender systems can be implemented.

As a consequence of this, if more data is available

then the system more probably becomes better. Also

from a human resource perspective, one has to be

sure that development team members are capable of

understanding the data and manipulating it in a way

to make it compatible with the methods that will be

used to build the recommender system.

Interactions have to be defined with respect to the

system so that data can be extracted easily.

B. Implementation

1) Structure of the Dataset

There are two main aspects of data that has to be

taken into consideration: quantity and quality. First

and foremost the dataset must contain enough

entries to serve a learning algorithm well. The

second aspect, quality, defines that data gathered

and stored has to contain meaningful information in

some way, even if its form is not directly

compatible with machine learning algorithms,

different transformations can be applied to achieve

the desired structure. Both of the recommendation

systems are going to use the same dataset for

training and evaluation. MovieLens 20M movie

rating dataset is used from grouplens.org [21]. The

dataset contains 20 million movie ratings and

465,000 tag applications applied to 27,000 movies

by 138,000 users. It also includes tag genome data

with 12 million relevance scores across 1,100 tags.

The dataset contains the following files in .csv

format: movies.csv: Stores the movie entities with

movie Id, title and genres fields;

• ratings.csv: Stores the rating entities with user Id,

movie Id, rating and timestamp fields;

• tags.csv: Stores the tags added to movies by

users with userId, movieId, tag and timestamp

fields;

• genome-tags.csv: Stores the tag type entities with

tagId and tag fields;

• genome-scores.csv: Stores the tag relevance

score for each movie with movieId, tagId and

relevance fields

• links.csv: Stores the link entities between imdb

and tmdb databases with movieId, imdbId, and

tmdbId fields.

The data provided by MovieLens20M is already

structured very well, only some features have to be

transformed from text to numbers in order to be

compatible with machine learning algorithms. Also,

the amount of data is more than enough for training

and evaluating the model.

2) Collaborative Filtering in ML.NET

The first application is a console application built

using.NET Core and C# programming language.

The main goal of this application is to construct,

train and tune a machine learning algorithm in order

to make predictions of a specific data format.

The data comes from the MovieLens20M datasets

ratings.csv file. It contains 20 million movie rating

entries that will be used by the model during the

learning phase and also for evaluation. A movie

rating entry consists of the ID of the user who made

the rating, the ID of the film that was rated, the

rating itself and a timestamp when the rating

happened. Since the prediction will return results in

the form of movie IDs, a secondary file is necessary

to make the recommendations human-readable, i.e.

list the name of the movies instead of their IDs. As

was mentioned in the previous section

MovieLens20M contains such a file, movies.csv.

This file holds the ID of the movie, its title and a list

International Journal on Applications in Information and communication Engineering

Volume 10 : Issue 1 : January 2024, pp 6 – 14 www.aetsjournal.com ISSN (Online) : 2394 – 6237

-- --------------------------

10

of tags that describe to what category the movie

belongs to such category.

In order to be able to work with the data that comes

from the data sources, specific classes must be

created. Another class is also necessary to hold the

predictions. It is having two fields, Label and Score.

After the necessary data structure is defined the

next step is to import the data into the memory.

Since the application is using only one data source

for ratings, after it is loaded in the memory it must

be split into two sets. The goal of this is to use the

same file for both training and testing purposes.

Once the data is in the memory the model

configuration can be started. ML.NET offers several

different options when it comes to

recommendations, like one class matrix

factorization, matrix factorization, and field-aware

matrix factorization.

Figure 2 represents what data one should have in

order to be able to use various matrix factorization

methods. In this case, MovieLens database provides

userId, movieId and rating fields. This makes it

perfect for the simple matrix factorization method

to use.

Figure 2 Matrix factorization techniques available in

ML.NET

ML.NET offers a simple way of creating a matrix

factorization recommender. First, the options for the

matrix factorization have to be configured. There

are five options that are necessary: Matrix Column

Index Column Name, Matrix Row Index Column

Name, Label Column Name, Number Of Iterations

and Approximation Rank. The first three options

will tell the trainer algorithm which columns (fields

of classes) represent the users, the items and were

the result. The Number of Iterations and

Approximation Rank options can be used to tune

the training of the model.

After the options of the matrix factorization trainer

are set up only the pipeline has to be configured.

ML.NET works by the idea of the pipeline, the way

of dataflow has to describe in order to be able to

train a model. Figure 3 shows the complete

structure of the pipeline.

Figure 3 The complete structure of the pipeline.

As can be seen, it consists of three elements:

• First MapValueToKey: reads the userId column

and builds a dictionary of unique Ids. Then

creates an output column userIdEncoded

containing an encoding for each Id. This step

converts the Ids to numbers that the model

understands;

• Second MapValueToKey: reads the itemId

column and builds a dictionary of unique Ids.

Then creates an output column itemId Encoded

containing an encoding for each Id. This step

converts the Ids to numbers that the model

understands;

• Matrix Factorization: performs matrix

factorization on the encoded Id columns and the

ratings. It uses the previously configured options

to create the trainer. It is responsible for the

calculation of item rating predictions.

The final step is evaluating the system. Evaluations

are different for every system, and they depend only

on the main objective of the system. For example, if

a top n items recommender is implemented, there is

no need to take into consideration the remaining

items prediction score. The selected evaluation

method can greatly influence the system's

architecture.

 There are two main types of evaluations in the

case of recommender systems, offline and online

methods. The presented model is evaluated using

offline methods. As it was previously configured,

15% of the available data is going to be used for

evaluation. In order to assess the performance of the

International Journal on Applications in Information and communication Engineering

Volume 10 : Issue 1 : January 2024, pp 6 – 14 www.aetsjournal.com ISSN (Online) : 2394 – 6237

-- --------------------------

11

system, the root means squared error (RMSE) value

of the predictions will be taken into consideration.

A comparison is presented in table 1 for a different

number of training iterations of the model. These

experiments were conducted on a laptop with

Windows 7 64-bit operating system, with an Intel

Core i5-3230M processor and 6GB of RAM.

TABLE I. COMPARISON OF RMSE

BETWEEN ITERATIONS

From table 1 it can be observed that for a not so

powerful CPU the training time of such a model does

not take up much time, even for the 17 million

entries that are used for the training phase.

Figure 4 shows a better overview of how the RMSE

value is changing when the number of iterations of

training is modified. As can be seen, there is a high

increase in predictions if the amount of iterations is

increased to at least 35. From 35 to 75 the decrease

in the RMS value is only marginal, less than 0.001.

At this point, the number of iterations must be

increased carefully in order to avoid over fitting.

Anyhow these RMSE values show that after at least

35 training iterations the recommendation system

based on the evaluation data performs well.

Figure 4 Evolution of RMS of evaluation

3) The hybrid model in Azure Machine Learning

Studio

For this approach, the same data is going to be

used as before, the MovieLens20M dataset. This

time a hybrid model will be built and evaluated,

which extends the previous pure collaborative

approach.

The first step is loading the data into the studio's

workspace. The uploaded datasets are the

movies.csv and the ratings.csv files, that hold the

name of the movies and the ratings of the movies

given by the users respectively. The first element of

the model is going to be the dataset paired together

with a "Select Columns" data transformation

element. This filters out all the columns that are

needed for the training, skipping over the ones with

hold no useful information. Just like before, in the

case of the ML.NET application, from the

ratings.csv the userId, movieId and rating columns

are going to be used.

The timestamp column does not seem relevant for

predicting the rating of the movie. Furthermore, this

time the genre of the movie is also going to be taken

into consideration during training and prediction.

The movies.csv holds this information along with

the movieId and title attributes. Also, in this case,

the initial dataset has to be split up for training and

evaluation sets. The chosen model is Azure's

Matchbox recommender, which creates a Bayesian

recommender using the matchbox algorithm.

The "Train Matchbox Recommender" component

uses a dataset of user-item-rating triple and can also

handle user and item features if there are any. In

this case, item features are available in the form of

movie genres. These item features will help to solve

the cold-start problem. This component has the

Number

of

iterations

Root

mean

squared

error

Training

times

(sec)

5 0.8383 34

10 0.8248 42

15 0.8192 59

20 0.8163 62

25 0.8142 66

30 0.8127 75

35 0.8120 86

40 0.8108 98

45 0.8100 106

50 0.8094 115

55 0.8087 124

60 0.8082 134

65 0.8079 145

70 0.8074 150

75 0.8071 159

80 0.8069 165

85 0.8066 168

International Journal on Applications in Information and communication Engineering

Volume 10 : Issue 1 : January 2024, pp 6 – 14 www.aetsjournal.com ISSN (Online) : 2394 – 6237

-- --------------------------

12

options to configure the number of training

iterations, which is set to 5 and the number of

training batches, i.e. the number of batches to divide

the data during training, which is set to 4 and the

number of traits, set to 4, which is the number of

latent traits that should be learned for every user

and item.

After training the model has to be scored. There is

a "Score Matchbox Recommender" module that

does this job. Its inputs are the output of the trained

model, the evaluation dataset and the item features,

i.e. the movie genres.

The last step of every machine learning algorithm

is evaluated and this is no different in this case. The

final component of the model is an "Evaluate

Recommender" module which, as its name

suggests, is going to make the evaluation of the

model.

Figure 5 shows both the structure and the flow of

information on the complete system.

Figure 5 Structure of the complete model

The evaluation module compares the test dataset

ratings with the predicted ratings of the scored

dataset. It offers some metrics about the results,

namely the mean absolute error (MAE) and the

RMSE. The results of the evaluation are presented

in figure 6.

Figure 6 Results of the evaluation component

Pocahontas is an animated children's movie tagged

with the following genres in the dataset:

animation, children, drama, musical, romance.

Based on all this information the expected

recommendations should include similar movies

that are mainly animated and address children. The

top ten recommendations are presented in the next

figure.

Figure 7 Top 10 movie recommendations

As can be observed the results are perfectly in

balance with the expectations, as most of the

recommendations are indeed animated children

movies. As a conclusion, it can be said that all the

recommendations are completely relevant regarding

the given input.

4) Comparison of the Systems

Even though both of the implemented approaches

addressed the sample problem, two different ways

of implementation were presented each with its

advantages and disadvantages.

The first approach of directly implementing a

collaborative filtering model had the main

advantage of coding the model itself, having control

over every single parameter regarding the

preprocessing, training and evaluation of the data.

At the same time, it also leverages the power of the

open-source ML.NET framework, which is

constantly growing. Also, the model created with

ML.NET can be exported in ONNX format to be

later used by other applications. On the other hand,

one of the main disadvantages is that C# coding

skills are required, and since the ML.NET project is

very new, it is exposed to frequent changes, making

refactorization of old code a must in order to use the

features of the newest versions. The best way of

comparing the performances of the two models

would be to deploy them in as part of an already

released system and observe their impact on user

International Journal on Applications in Information and communication Engineering

Volume 10 : Issue 1 : January 2024, pp 6 – 14 www.aetsjournal.com ISSN (Online) : 2394 – 6237

-- --------------------------

13

behavior, performing this way online evaluation.

However such a system is not available for the sake

of this research and also gathering the necessary

data would take a considerable amount of time, the

results of offline evaluations are going to be

compared. Using the RMSE values obtained during

validation can offer some insight. It must be noted

that the two systems implement two different

approaches, so the final decision cannot be based

completely on the RMSE value.

The pure collaborative approach yielded a lower

RMSE value than the model trained in Azure, 0.81

for 45 iterations vs. 1.03 from Azure, but it must be

taken into account that it suffers from the cold start

problem.

The hybrid approach of the matchbox

recommender eliminates this problem and at the

same time can make use of additional features that

come from the datasets. Using extra features in the

first approach would have required a field aware

matrix factorization model and more work to

process the data.

IV. CONCLUSION

The systems were tested on the MovieLens20M

database, which contains 20 million movie ratings

and user and movie data. The tests were performed

multiple times to adjust the parameters of the

training algorithm in order to achieve better results.

A collaborative filtering-based recommendation

model was created, using a new and open-source

machine learning framework, ML.NET.

The second model was built by using Microsoft's

Azure Machine Learning Studio, which allowed a

completely different approach towards developing

machine learning solutions.

Although the first approach of a pure collaborative

filtering method reached a better RMSE value, it

does not mean that it is better. The matchbox

recommender is a hybrid model, which solves the

cold start problem. This in itself can mean a huge

real-life difference, which cannot be measured with

synthetic tests. The best recommendation method

can be chosen by carefully observing what type of

data is available and what problem should the

recommendation address.

One of the biggest improvements of the above-

mentioned systems would be to modify them to be

capable of continuous training, i.e. learning

continuously from the new data as it comes. The

current systems must be retrained periodically in

order to incorporate information from freshly

delivered data. An additional feature would be the

implementation of a big data module, that would

hold all the user, item and user- item interaction

related information. This module then could be

connected to the recommender system which would

perform online learning, continuously improving

and adapting to users.

REFERENCES

[1] G.C. Capelleveen, C. Amrit, D.M. Yazan, W.H.M. Zijm, ―The

recommender canvas: A model for developing and

documenting recommender system design‖. Expert systems

with applications, pp. 97-117, 2019.

[2] F. Ricci, L. Rokach, B. Shapira, Introduction to Recommender

Systems Handbook. Boston, Massachusetts, United States of

America: Springer, 2010.

[3] Y. Lim, ―A Primer to Recommendation Engines‖, Sep 10,

2019.

[4] J. Erickson and S. Wang. (2017, June) www.alizila.com.

[Online]. https://www.alizila.com/at-alibaba artificial-

intelligence-is-changing- how-people-shop-online.

[5] I. MacKenzie, C. Meyer, and S. Noble. (2013, Oct.)

www.mckinsey.com.[Online].

https://www.mckinsey.com/industries/retail/our-insights/how-

retailers-can-keep-up-with-consumers.

[6] C.A. Gomez-Uribe and N. Hunt, "The Netflix Recommender

System: Algorithms, Business Value," ACM Transactions on

Management Information Systems (TMIS), vol. VI, no. 4, p. 7,

Jan. 2016.

[7] J. Schmidt, M.R.G. Marques, S. Botti, et al. ―Recent advances

and applications of machine learning in solid-state materials

science‖. npj Comput Mater 5, 83, 2019.

[8] F. Ricci, L. Rokach, B. Shapira, ―Recommender Systems:

Introduction and Challenges‖. In: Ricci F., Rokach L., Shapira

B. (eds) Recommender Systems Handbook. Springer, Boston,

MA, 2015.

[9] F.O. Isinkaye, Y.O. Folajimi, B.A. Ojokoh, ―Recommendation

systems: Principles, methods and evaluation‖. Egyptian

Informatics Journal, Volume 16, Issue 3, pp. 261-273,

November 2015.

[10] P. Lops, M. Gemmis, G. Semeraro, ―Content-based

Recommender Systems: State of the Art and Trends‖. In book:

Recommender Systems Handbook, pp. 73-105, 2011.

[11] E. Cano and M. Morisio, ―Hybrid Recommender Systems: A

Systematic Literature Review‖. Intelligent Data Analysis, vol.

21, no. 6, pp. 1487-1524, 2017.

[12] H. Mak, I. Koprinska, and J. Poon, "INTIMATE: A Web-Based

Movie Recommender Using Text Categorization," Proceedings

of the 2003 IEEE/WIC International Conference on Web

Intelligence, 2003.

[13] L.H. Li, R. Hsu, F. Lee, ―Review of Recommender Systems

and Their Applications‖. Computer Science, 2012.

International Journal on Applications in Information and communication Engineering

Volume 10 : Issue 1 : January 2024, pp 6 – 14 www.aetsjournal.com ISSN (Online) : 2394 – 6237

-- --------------------------

14

[14] P. Covington, J. Adams, and E. Sargin, "Deep Neural Networks

for YouTube Recommendations," Mountain View, California,

2016.

[15] A. Bellogín, P. Castells, I. Cantador, ―Neighbor Selection and

Weighting in User-Based Collaborative Filtering: A

Performance Prediction Approach‖. ACM Transactions on the

Web, No. 12, 2014.

[16] S.C. Stephen, H. Xie, and S. Rai, ―Measures of Similarity in

Memory- Based Collaborative Filtering Recommender System:

A Comparison‖, 4th Multidisciplinary International Social

Networks Conference, 2017.

[17] G.S. Milovanovic, ―Hybrid content-based and collaborative

filtering recommendations with {ordinal} logistic regression

(1): Feature engineering‖, Data Science Central, 2017.

[18] M.G. Vozalis and K.G. Margaritis, "On the Enhancement of

Collaborative Filtering by Demographic Data," in Web

Intelligence and Agent Systems, Vol. 1, 2006

[19] A.M. Caulfield, E.S. Chung, A. Putnam, H.Angepat, J. Fowers,

M. Haselman, S. Heil, M. Humphrey, P. Kaur, J. Kim, D. Lo,

T. Massengill, K. Ovtcharov, M. Papamichael, L. Woods, S.

Lanka, D. Chiou, D. Burger, ―A Cloud-Scale Acceleration

Architecture‖. MICRO-49: The 49th Annual IEEE/ACM

International Symposium on Microarchitecture, No. 7, pp 1–13,

2016.

[20] J. Mizgajski and M. Morzy, ―Affective recommender systems

in online news industry: how emotions influence reading

choices‖, User Model User-Adap Inter 29, pp.345–379, 2019.

[21] F. Maxwell Harper and J. A. Konstan, ―The MovieLens

Datasets: History and Context‖. ACM Transactions on

Interactive Intelligent Systems (TiiS), No. 19, 2015.

