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Abstract—    Recommender systems are a subclass of 

information filtering systems. These systems are specialized 

software components, which usually make part of a larger 

software system, but can also be standalone tools. A 

recommender system's main goal is to provide the user 

software suggestions for items that can be useful. The 

suggestions are related to different decision-making 

mechanisms, different techniques, such as, what product to 

buy, what movie to watch, or what vacation to reserve. In the 

context of recommender systems, the general term "item" 

refers to what the system is actually recommending to its 

users. The paper presents the development and the 

comparison of multiple recommendation systems, capable of 

making item suggestions, based on user, item and user-item 

interaction data, using different machine learning algorithms. 

Also, the paper deals with finding different ways of using 

machine learning models to create recommendation 

systems, training, evaluating and comparing the different 

methods in order to provide a general but accurate solution 

for ranking prediction. 

 

Keywords — recommendation systems, machine learning 

algorithms, decision-making mechanisms, ranking 

prediction. 

I. INTRODUCTION 

iven a system that has a huge amount of users 

and a similar amount of content to present for 

them, the filtering process becomes crucial. Nobody 

can expect a user to search manually through 

thousands or even hundreds of thousands of different 

items, whether these are movies, products or news, 

in order to find what he is looking for. Without 

recommendations, the users would come in contact 

only with the direct search result,  that in the case of 

a tremendous amount of items, would limit the 
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number of returned data to tens, maybe hundreds of 

items if the user looks through multiple pages. Even 

in the case of smaller e-commerce websites or news 

sites, where items are categorized properly, the 

number of items may exceed a user's ability to find 

what he is looking for. Recommender systems 

usually focus only on a unique type of item, for 

example, videos, music, and with respect to their 

design, their main recommendation method used to 

make decisions and their graphical user interface 

are all tailored to that specific type of item [1, 2]. 

Different users or groups of users receive various 

suggestions because recommendations are usually 

made by taking into account the unique properties 

of the users. Non- personalized recommendations 

are easier to create and can be found mainly in 

magazines or newspapers [3]. Users may find some 

specific items a system has to offer compelling, but 

the problem is that they might never find out their 

existence if the system contains too many items. 

The goal of the recommender is to show the user a 

new set of items and possibilities, which they would 

not look up on their own. A significant amount of 

world-leading companies are already using 

recommender systems in their everyday operations 

to make users spend more time or money on their 

websites [4, 5, 6]. One of the main problems is that 

most recommender systems are built by many 

researchers and developers for performing 

extremely well in a specific task. This means both a 

huge time and financial investment for anyone who 

is looking for such a system to integrate.  

 The paper presents a solution that uses different 

pre- trained machine learning models and traditional 

approaches as well and applies them on a dataset in 

order to provide such a recommender. The results 

are compared in order to identify possible problems, 

tradeoffs, shortcomings but also advantages these 

systems can have. An online dataset was  used in 
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order to train different models both on the local 

machine, using ML.NET and in the cloud with 

Azure Learning Studio. Once the models have been 

trained, the system should be able to recommend 

different movies for users, by predicting what rating 

the user would have given if he had already seen 

that specific movie. The rest of the paper is 

organized as follows: chapter II presents theoretical 

information in the field, in chapter III describes the 

proposed solutions, and chapter IV exposed some 

future improvements and conclusions.  

II. STATE OF THE ART 

Nowadays artificial intelligence (AI), machine 

learning (ML) and deep learning (DL) are trending 

fields. These terms are frequently used as 

alternatives for each other, however, this is not 

always correct. It has to be mentioned that from all 

these terms AI is the most general concept, ML 

being just a subset of AI and DL making part of ML 

[7]. The main objective of any ML algorithm is to 

generalize beyond the training samples, to 

understand and interpret data that it has never ‗seen‘ 

before with success. There are multiple techniques 

of creating a recommender system, all based on 

different aspects of the collected data and the 

environment it is part of. Recommender systems 

can be broken into three main categories [8]: 

content-based filtering, collaborative filtering, and 

hybrid systems. Collaborative filtering algorithms 

are more often implemented than the others and 

often lead to better predictive performance. 

However, each technique has its advantages and 

disadvantages that must be taken into consideration 

before implementation [9]. 

A. Content-Based Filtering 

The basic idea behind content-based filtering is 

that each item has some features. Recommender 

systems applies a content-based recommendation 

approach analyze, a set of documents and/or 

descriptions of items previously rated by the user, 

and creates a model or profile of user interests 

based on the features of the objects rated by that 

user [10]. Users are associated with a set of 

preferences related to item contents. A profile can 

be created explicitly by the user or automatically 

generated based upon his/her past actions. The 

profile is a structured representation of user 

interests, used to recommend new interesting items. 

The recommendation process can be described as 

comparing the attributes of the user profile with the 

attributes of an item. The outcome is a relevance 

score that represents how interested is the user in 

that given item. If a user profile precisely models 

user interests, it is of huge advantage for the 

effectiveness of an information retrieval operation. 

The content-based recommendation requires proper 

techniques for representing the items and creating 

the user profiles, along with some algorithm for 

matching a user profile with an item's 

representation. The use of content-based 

recommendation has several advantages, like 

independence from users, transparency, etc. As with 

any technique, the content-based approach also has 

some serious disadvantages, which must be taken 

into consideration: limited content analysis or over-

specialization. 

 Content-based recommender systems are present 

in a variety of applications. LIBRA [11] uses a 

naive Bayes text categorization algorithm for 

recommending books by using product descriptions 

gathered from the Amazon online store. Another 

good example is Intimate [12], which creates movie 

recommendations by applying text categorization 

methods to learn from movie synopses collected 

from IMDB. The user has to categorize a minimum 

amount of films in order to get suggestions from the 

system: terrible, bad, below average, above average, 

good and excellent. 

Recommenders are also present in news 

suggestions, where DailyLearner has to be 

mentioned. It keeps two user models, one for short-

term interests and one for long-term interests. The 

short-term interest profile is based on nearest 

neighbor text classification, while for long-term 

interests a naïve Bayesian model is created. 

A great web recommender is Letizia [13], which 

was developed as a browser extension that creates a 

model, tailored to the user. It builds from keywords 

from the user's interests by following the user‘s 

browsing. It is based on implicit observations to 

learn the user‘s interests. By putting a page in the 
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bookmarks shows a strong sign that the user is 

interested in the content of that page. 

 The research of "mainstream" recommender 

systems conducted in the last 10-15 years shows 

that the keyword-based representation for users and 

items as well offer very good results, given that the 

necessary amount of user interest is available. The 

majority of content-based recommenders are 

created as text classifiers using training sets of 

documents, which represent user interests or the 

lack of it. As a result, for achieving high accuracy 

the training sets must contain a large amount of 

data. The main problem with this approach is the 

lack of "intelligence". If more complex 

characteristics have to be taken into account, 

keyword-based techniques meet their limits.  

B. Collaborative Filtering 

Collaborative filtering is realized by analyzing the 

behavior of a group of users to make provide 

suggestions to other users. The preferences of other 

users influence the recommendation. The main idea 

behind the collaborative filtering-based technique is 

that if a person has the same opinion as another 

person on a topic, then he is more likely to share 

that other person's opinion on another topic than 

that of a randomly chosen person. One of the 

simplest examples would be if a user gets a movie 

recommendation because his friend positively rated 

that movie and they have a similar history in rating 

movies. Using a matrix the set of interactions can be 

visualized, where each entry (i, j) on the matrix 

represents the interaction between the user ―i‖ and 

item ―j‖. From another perspective, collaborative 

filtering can be viewed as a generalization of 

regression and classification. 

Using collaborative filter-based recommendation 

has several advantages compared to content-based 

systems, like no domain knowledge necessary, 

serendipity, affinity to nuances, benefits of large 

user bases. Collaborative filtering- based 

approaches also come with some drawbacks, like 

complexity and expense, cold start (the system 

needs enough information (user-item interactions) 

to work properly). Collaborative filtering is 

currently one of the most frequently used 

approaches and usually provides better results than 

content-based recommendations. A perfect example 

would be YouTube's recommendation system. As it 

is presented in [14], their system is composed of 

two neural networks working together to provide 

recommendations, one for candidate generation and 

one for ranking.  

C. Hybrid Systems 

The simplest and most direct way to build a hybrid 

recommender system is to take the independent 

result of content and a collaborative-based 

recommender system, then using a voting scheme 

combine their predictions (fig. 1). 

 

 

Figure 1 Hybrid recommender system's basic 

architecture 

[15] presents a method where the combination is 

done by choosing items that correspond to the user's 

profile and at the same time having positive ratings 

from the user's neighbors. In [16], the technique 

used compares users according to their content-

based profiles and uses a collaborative filtering 

system where the generated similarity measures are 

used. In [17], the predictions based on the content 

are used to enrich the rating matrix, and then 

collaborative filtering is run. In [18], item-based 

collaborative filtering is run, but before that uses the 

item's content descriptions and their associated 

rating vectors to calculate the similarity between 

them. 

III. PROPOSED SYSTEM 

In this paper, two different movie recommender 

system designs are going to be presented, each 

based on a different recommendation method. The 

goal of the designed system is to predict what rating 

would a user give to a movie and based on this 

predicted rating to recommend movies. 

The first type of system is implemented as an 

executable console application using the .NET Core 

and .NET Standard frameworks. It will be based on 

matrix factorization to provide recommendations. 
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This is going to be a pure collaborative filtering 

approach. 

The second approach will use Microsoft's cloud 

service, namely Azure Machine Learning Studio 

(AMLS). AMLS offers the possibility to create 

different machine learning models and train them 

directly in the cloud using Microsoft's immense 

cloud infrastructure [19]. Once a model is 

constructed it can be made available by exposing its 

functionality through a REST API. The model will 

use Microsoft's pre-trained hybrid model for the 

recommendation, Matchbox recommender. 

A. Prerequisites of a Recommender System 

 The most important part of any machine learning 

model is data [20]. Typically some information 

about the users and items must be at disposal. 

Content-based filtering is a good start if only 

metadata is available about the users and items. If a 

sufficiently high amount of user-item interactions 

are accessible then more powerful collaborative or 

hybrid recommender systems can be implemented. 

As a consequence of this, if more data is available 

then the system more probably becomes better. Also 

from a human resource perspective, one has to be 

sure that development team members are capable of 

understanding the data and manipulating it in a way 

to make it compatible with the methods that will be 

used to build the recommender system. 

Interactions have to be defined with respect to the 

system so that data can be extracted easily. 

B. Implementation 

1)  Structure of the Dataset 

There are two main aspects of data that has to be 

taken into consideration: quantity and quality. First 

and foremost the dataset must contain enough 

entries to serve a learning algorithm well. The 

second aspect, quality, defines that data gathered 

and stored has to contain meaningful information in 

some way, even if its form is not directly 

compatible with machine learning algorithms, 

different transformations can be applied to achieve 

the desired structure. Both of the recommendation 

systems are going to use the same dataset for 

training and evaluation. MovieLens 20M movie 

rating dataset is used from grouplens.org [21]. The 

dataset contains 20 million movie ratings and 

465,000 tag applications applied to 27,000 movies 

by 138,000 users. It also includes tag genome data 

with 12 million relevance scores across 1,100 tags. 

The dataset contains the following files in .csv 

format: movies.csv: Stores the movie entities with 

movie Id, title and genres fields; 

• ratings.csv: Stores the rating entities with user Id, 

movie Id, rating and timestamp fields; 

• tags.csv: Stores the tags added to movies by 

users with userId, movieId, tag and timestamp 

fields; 

• genome-tags.csv: Stores the tag type entities with 

tagId and tag fields; 

• genome-scores.csv: Stores the tag relevance 

score for each movie with movieId, tagId and 

relevance fields 

• links.csv: Stores the link entities between imdb 

and tmdb databases with movieId, imdbId, and 

tmdbId fields. 

The data provided by MovieLens20M is already 

structured very well, only some features have to be 

transformed from text to numbers in order to be 

compatible with machine learning algorithms. Also, 

the amount of data is more than enough for training 

and evaluating the model. 

2)  Collaborative Filtering in ML.NET 

The first application is a console application built 

using.NET Core and C# programming language. 

The main goal of this application is to construct, 

train and tune a machine learning algorithm in order 

to make predictions of a specific data format. 

The data comes from the MovieLens20M datasets 

ratings.csv file. It contains 20 million movie rating 

entries that will be used by the model during the 

learning phase and also for evaluation. A movie 

rating entry consists of the ID of the user who made 

the rating, the ID of the film that was rated, the 

rating itself and a timestamp when the rating 

happened. Since the prediction will return results in 

the form of movie IDs, a secondary file is necessary 

to make the recommendations human-readable, i.e. 

list the name of the movies instead of their IDs. As 

was mentioned in the previous section 

MovieLens20M contains such a file, movies.csv. 

This file holds the ID of the movie, its title and a list 
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of tags that describe to what category the movie 

belongs to such category. 

In order to be able to work with the data that comes 

from the data sources, specific classes must be 

created. Another class is also necessary to hold the 

predictions. It is having two fields, Label and Score. 

After the necessary data structure is defined the 

next step is to import the data into the memory. 

Since the application is using only one data source 

for ratings, after it is loaded in the memory it must 

be split into two sets. The goal of this is to use the 

same file for both training and testing purposes. 

Once the data is in the memory the model 

configuration can be started. ML.NET offers several 

different options when it comes to 

recommendations, like one class matrix 

factorization, matrix factorization, and field-aware 

matrix factorization. 

Figure 2 represents what data one should have in 

order to be able to use various matrix factorization 

methods. In this case, MovieLens database provides 

userId, movieId and rating fields. This makes it 

perfect for the simple matrix factorization method 

to use. 

 

Figure 2 Matrix factorization techniques available in 

ML.NET 

ML.NET offers a simple way of creating a matrix 

factorization recommender. First, the options for the 

matrix factorization have to be configured. There 

are five options that are necessary: Matrix Column 

Index Column Name, Matrix Row Index Column 

Name, Label Column Name, Number Of Iterations 

and Approximation Rank. The first three options 

will tell the trainer algorithm which columns (fields 

of classes) represent the users, the items and were 

the result. The Number of Iterations and 

Approximation Rank options can be used to tune 

the training of the model. 

After the options of the matrix factorization trainer 

are set up only the pipeline has to be configured. 

ML.NET works by the idea of the pipeline, the way 

of dataflow has to describe in order to be able to 

train a model. Figure 3 shows the complete 

structure of the pipeline. 

 

Figure 3 The complete structure of the pipeline. 

As can be seen, it consists of three elements: 

• First MapValueToKey: reads the userId column 

and builds a dictionary of unique Ids. Then 

creates an output column userIdEncoded 

containing an encoding for each Id. This step 

converts the Ids to numbers that the model 

understands; 

• Second MapValueToKey: reads the itemId 

column and builds a dictionary of unique Ids. 

Then creates an output column itemId Encoded 

containing an encoding for each Id. This step 

converts the Ids to numbers that the model 

understands; 

• Matrix Factorization: performs matrix 

factorization on the encoded Id columns and the 

ratings. It uses the previously configured options 

to create the trainer. It is responsible for the 

calculation of item rating predictions. 

The final step is evaluating the system. Evaluations 

are different for every system, and they depend only 

on the main objective of the system. For example, if 

a top n items recommender is implemented, there is 

no need to take into consideration the remaining 

items prediction score. The selected evaluation 

method can greatly influence the system's 

architecture. 

 There are two main types of evaluations in the 

case of recommender systems, offline and online 

methods. The presented model is evaluated using 

offline methods. As it was previously configured, 

15% of the available data is going to be used for 

evaluation. In order to assess the performance of the 
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system, the root means squared error (RMSE) value 

of the predictions will be taken into consideration. 

A comparison is presented in table 1 for a different 

number of training iterations of the model. These 

experiments were conducted on a laptop with 

Windows 7 64-bit operating system, with an Intel 

Core i5-3230M processor and 6GB of RAM. 

TABLE I. COMPARISON OF RMSE 

BETWEEN ITERATIONS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From table 1 it can be observed that for a not so 

powerful CPU the training time of such a model does 

not take up much time, even for the 17 million 

entries that are used for the training phase. 

Figure 4 shows a better overview of how the RMSE 

value is changing when the number of iterations of 

training is modified. As can be seen, there is a high 

increase in predictions if the amount of iterations is 

increased to at least 35. From 35 to 75 the decrease 

in the RMS value is only marginal, less than 0.001. 

At this point, the number of iterations must be 

increased carefully in order to avoid over fitting. 

Anyhow these RMSE values show that after at least 

35 training iterations the recommendation system 

based on the evaluation data performs well. 

 

 

Figure  4 Evolution of RMS of evaluation 

3)  The hybrid model in Azure Machine Learning 

Studio 

For this approach, the same data is going to be 

used as before, the MovieLens20M dataset. This 

time a hybrid model will be built and evaluated, 

which extends the previous pure collaborative 

approach. 

The first step is loading the data into the studio's 

workspace. The uploaded datasets are the 

movies.csv and the ratings.csv files, that hold the 

name of the movies and the ratings of the movies 

given by the users respectively. The first element of 

the model is going to be the dataset paired together 

with a "Select Columns" data transformation 

element. This filters out all the columns that are 

needed for the training, skipping over the ones with 

hold no useful information. Just like before, in the 

case of the ML.NET application, from the 

ratings.csv the userId, movieId and rating columns 

are going to be used. 

The timestamp column does not seem relevant for 

predicting the rating of the movie. Furthermore, this 

time the genre of the movie is also going to be taken 

into consideration during training and prediction. 

The movies.csv holds this information along with 

the movieId and title attributes. Also, in this case, 

the initial dataset has to be split up for training and 

evaluation sets. The chosen model is Azure's 

Matchbox recommender, which creates a Bayesian 

recommender using the matchbox algorithm. 

The "Train Matchbox Recommender" component 

uses a dataset of user-item-rating triple and can also 

handle user and item features if there are any. In 

this case, item features are available in the form of 

movie genres. These item features will help to solve 

the cold-start problem. This component has the 

Number 

of 

iterations 

Root 

mean 

squared 

error 

Training 

times 

(sec) 

5 0.8383 34 

10 0.8248 42 

15 0.8192 59 

20 0.8163 62 

25 0.8142 66 

30 0.8127 75 

35 0.8120 86 

40 0.8108 98 

45 0.8100 106 

50 0.8094 115 

55 0.8087 124 

60 0.8082 134 

65 0.8079 145 

70 0.8074 150 

75 0.8071 159 

80 0.8069 165 

85 0.8066 168 



International Journal on Applications in Information and communication Engineering  

Volume 10 : Issue 1 : January  2024, pp 6  – 14  www.aetsjournal.com                                              ISSN (Online) : 2394 – 6237 

---------------------------------------------------------------------------------------------------------------------------- -------------------------- 

12 

 

options to configure the number of training 

iterations, which is set to 5 and the number of 

training batches, i.e. the number of batches to divide 

the data during training, which is set to 4 and the 

number of traits, set to 4, which is the number of 

latent traits that should be learned for every user 

and item. 

After training the model has to be scored. There is 

a "Score Matchbox Recommender" module that 

does this job. Its inputs are the output of the trained 

model, the evaluation dataset and the item features, 

i.e. the movie genres. 

The last step of every machine learning algorithm 

is evaluated and this is no different in this case. The 

final component of the model is an "Evaluate 

Recommender" module which, as its name 

suggests, is going to make the evaluation of the 

model. 

Figure 5 shows both the structure and the flow of 

information on the complete system. 

 

Figure  5 Structure of the complete model 

The evaluation module compares the test dataset 

ratings with the predicted ratings of the scored 

dataset. It offers some metrics about the results, 

namely the mean absolute error (MAE) and the 

RMSE. The results of the evaluation are presented 

in figure 6. 

 

Figure 6 Results of the evaluation component 

Pocahontas is an animated children's movie tagged 

with the following genres in the dataset: 

animation, children, drama, musical, romance. 

Based on all this information the expected 

recommendations should include similar movies 

that are mainly animated and address children. The 

top ten recommendations are presented in the next 

figure. 

 

Figure 7 Top 10 movie recommendations 

As can be observed the results are perfectly in 

balance with the expectations, as most of the 

recommendations are indeed animated children 

movies. As a conclusion, it can be said that all the 

recommendations are completely relevant regarding 

the given input. 

4)  Comparison of the Systems 

Even though both of the implemented approaches 

addressed the sample problem, two different ways 

of implementation were presented each with its 

advantages and disadvantages. 

The first approach of directly implementing a 

collaborative filtering model had the main 

advantage of coding the model itself, having control 

over every single parameter regarding the 

preprocessing, training and evaluation of the data. 

At the same time, it also leverages the power of the 

open-source ML.NET framework, which is 

constantly growing. Also, the model created with 

ML.NET can be exported in ONNX format to be 

later used by other applications. On the other hand, 

one of the main disadvantages is that C# coding 

skills are required, and since the ML.NET project is 

very new, it is exposed to frequent changes, making 

refactorization of old code a must in order to use the 

features of the newest versions. The best way of 

comparing the performances of the two models 

would be to deploy them in as part of an already 

released system and observe their impact on user 
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behavior, performing this way online evaluation. 

However such a system is not available for the sake 

of this research and also gathering the necessary 

data would take a considerable amount of time, the 

results of offline evaluations are going to be 

compared. Using the RMSE values obtained during 

validation can offer some insight. It must be noted 

that the two systems implement two different 

approaches, so the final decision cannot be based 

completely on the RMSE value. 

The pure collaborative approach yielded a lower 

RMSE value than the model trained in Azure, 0.81 

for 45 iterations vs. 1.03 from Azure, but it must be 

taken into account that it suffers from the cold start 

problem. 

The hybrid approach of the matchbox 

recommender eliminates this problem and at the 

same time can make use of additional features that 

come from the datasets. Using extra features in the 

first approach would have required a field aware 

matrix factorization model and more work to 

process the data. 

IV. CONCLUSION 

The systems were tested on the MovieLens20M 

database, which contains 20 million movie ratings 

and user and movie data. The tests were performed 

multiple times to adjust the parameters of the 

training algorithm in order to achieve better results. 

A collaborative filtering-based recommendation 

model was created, using a new and open-source 

machine learning framework, ML.NET. 

The second model was built by using Microsoft's 

Azure Machine Learning Studio, which allowed a 

completely different approach towards developing 

machine learning solutions. 

Although the first approach of a pure collaborative 

filtering method reached a better RMSE value, it 

does not mean that it is better. The matchbox 

recommender is a hybrid model, which solves the 

cold start problem. This in itself can mean a huge 

real-life difference, which cannot be measured with 

synthetic tests. The best recommendation method 

can be chosen by carefully observing what type of 

data is available and what problem should the 

recommendation address. 

 

One of the biggest improvements of the above-

mentioned systems would be to modify them to be 

capable of continuous training, i.e. learning 

continuously from the new data as it comes. The 

current systems must be retrained periodically in 

order to incorporate information from freshly 

delivered data. An additional feature would be the 

implementation of a big data module, that would 

hold all the user, item and user- item interaction 

related information. This module then could be 

connected to the recommender system which would 

perform online learning, continuously improving 

and adapting to users. 
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