
International Journal on Applications in Information and communication Engineering

Volume 7 : Issue 4 : November 2021, pp 9 – 15 www.aetsjournal.com ISSN (Online) : 2394 – 6237

--

9

Abstract— With cloud data services, it is commonplace

for data to be not only stored in the cloud, but also shared

across multiple users. Unfortunately, the integrity of cloud

data is subject to skepticism due to the existence of

hardware/software failures and human errors. Several

mechanisms have been designed to allow both data owners

and public verifiers to efficiently audit cloud data integrity

without retrieving the entire data from the cloud server.

However, public auditing on the integrity of shared data with

these existing mechanisms will inevitably reveal confidential

information—identity privacy—to public verifiers. In this

paper, we propose a novel privacy-preserving mechanism

that supports public auditing on shared data stored in the

cloud. And also, we introduced thump impression technique.

From this new technology we give High level security to the

share data in clouds. In particular, we exploit ring signatures

to compute verification metadata needed to audit the

correctness of shared data. With our mechanism, the identity

of the signer on each block in shared data is kept private from

public verifiers, who are able to efficiently verify shared data

integrity without retrieving the entire file. In addition, our

mechanism is able to perform multiple auditing tasks

simultaneously instead of verifying them one by one. Our

experimental results demonstrate the effectiveness and

efficiency of our mechanism when auditing shared data

integrity.

Index Terms — Public auditing, privacy-preserving, shared

data, cloud computing

I. INTRODUCTION

 loud service providers offer users efficient and

scalable data storage services with a much

lower marginal cost than traditional approaches. It

is routine for users to leverage cloud storage

Chinnasamy.N.V,

Faculty of Information Technology,

Dhanalakshmi Srinivasan Engineering College, Tamil Nadu,

India.

Saravanan.S , Faculty of Information Technology,

Dhanalakshmi Srinivasan Engineering College, Tamil Nadu,

India.

Ashfauk Ahamed A K

, Department of Computer Application

, BSA Crescent Institute of Science & Technology, Chennai .

services to share data with others in a group, as data

sharing becomes a standard feature in most cloud

storage offerings, including Dropbox, iCloud and

Google Drive.

The integrity of data in cloud storage, however, is

subject to skepticism and scrutiny, as data stored in

the cloud can easily be lost or corrupted due to the

inevitable hardware/software failures and human

errors. To make this matter even worse, cloud

service providers may be reluctant to inform users

about these data errors in order to maintain the

reputation of their services and avoid losing profits.

Therefore, the integrity of cloud data should be

verified before any data utilization, such as search

or computation over cloud data.

 The traditional approach for checking data

correctness is to retrieve the entire data from the

cloud, and then verify data integrity by checking the

correctness of signatures or hash values of the entire

data. Certainly, this conventional approach is able

to successfully check the correctness of cloud data.

However, the efficiency of using this traditional

approach on cloud data is in doubt.

 The main reason is that the size of cloud data is

large in general. Downloading the entire cloud data

to verify data integrity will cost or even waste users

amount of computation and communication

resources, especially when data have been corrupted

in the cloud. Besides, many uses of cloud data do

not necessarily need users to download the entire

cloud data to local devices. It is because cloud

providers, such as Amazon, can offer users

computation services directly on large-scale data

that already existed in clouds.

Recently, many mechanisms have been proposed

to allow not only a data owner itself but also a

public verifier to efficiently perform integrity

checking without downloading the entire data from

the cloud, which is referred to as publicauditing. In

these mechanisms, data is divided intomany small

HOMOMORPHIC AUTHENTICATION BASED

FILE SHARING IN CLOUD SERVER TECHNIQUE

CHINNASAMY. N. V , SARAVANAN.S ,

ASHFAUK AHAMED .A.K

C

International Journal on Applications in Information and communication Engineering

Volume 7 : Issue 4 : November 2021, pp 9 – 15 www.aetsjournal.com ISSN (Online) : 2394 – 6237

--

10

blocks,

Where each block is independently signed by the

owner; and a random combination of all the blocks

instead of the whole data is retrieved during

integrity checking. A public verifier could be a data

user who would like to utilize the owner’s data via

the cloud or a third-party auditor who can provide

expert integrity checking services. Moving a step

forward, Wang et al. designed an advanced auditing

mechanism, so that during public auditing on cloud

data, the content of private data belonging to a

personal user is not dis-closed to any public

verifiers. Unfortunately, current public auditing

solutions mentioned above only focus on personal

data in the cloud.

 We believe that sharing data among multiple users

is perhaps one of the most engaging features that

motivates cloud storage. Therefore, it is also

necessary to ensure the integrity of shared data in

the cloud is correct. Existing public auditing

mechanisms can actually be extended to verify

shared data integrity. However, a new significant

privacy issue introduced in the case of shared data

with the use of existing mechanisms is the leakage

of identity privacy to public verifiers.

 For instance, Alice and Bob work together as a

group and share a file in the cloud. The shared file

is divided into a number of small blocks,

where each block is independently signed by one of

the two users with existing public auditing solutions

.Once a block in this shared file is modified by a

user, this user needs to sign the new block using

his/her private key. Eventually, different blocks are

signed by different users due to the modification

introduced by these two different users. Then, in

order to correctly audit the integrity of the entire

data, a public verifier needs to choose the

appropriate public key for each block. As a result,

this public verifier will inevitably learn the identity

of the signer on each block due to the unique

binding between an identity and a public key via

digital certificates under public key infrastructure.

Failing to preserve identity privacy on shared data

during public auditing will reveal significant

confidential information to public verifiers.

Specifically, after performing several auditing tasks,

this public verifier can first learn that Alice may be

a more important role in the group because most of

the blocks in the shared file are always signed by

Alice; on the other hand, this public verifier can

also easily.

Deduce that the eighth block may contain data of a

higher value, because this block is frequently

modified by the two different users. To protect this

confidential information, it is essential and critical

to preserve identity privacy from public verifiers

during public auditing.

 In this paper, to solve the above privacy issue on

shared data, we propose Oruta, a novel privacy-

preserving public auditing mechanism. More

specifically, we utilize ring signatures to construct

homomorphic authenticators in Oruta, so that a

public verifier can verify the integrity of shared data

without retrieving the entire data while the identity

of the signer on each block in shared data is kept

private from the public verifier.

 In addition, we further extend our mechanism

to support batch auditing, which can perform

multiple auditing tasks simultaneously and improve

the efficiency of verification for multiple auditing

tasks. Meanwhile, Oruta is compatible with random

masking, which has been utilized in WWRL and

can preserve data privacy from public verifiers.

Moreover, we also leverage index hash tables from

a previous public auditing solution to support

dynamic data. A high-level comparison among

Oruta and existing mechanisms is presented.

II. PROBLEM STATEMENT

1) System Model

The system model in this paper involves three

parties: the cloud server, a group of users and a

public verifier. There are two types of users in a

group: the original user and a number of group

users. The original user initially creates shared data

International Journal on Applications in Information and communication Engineering

Volume 7 : Issue 4 : November 2021, pp 9 – 15 www.aetsjournal.com ISSN (Online) : 2394 – 6237

--

11

in the cloud, and shares it with group users. Both

the original user and group users are members of

the group. Every member of the group is allowed to

access and modify shared data. Shared data and its

verification metadata are both stored in the cloud

server. A public verifier, such as a third-party

auditor providing expert data auditing services or a

data user outside the group intending to utilize

shared data, is able to publicly verify the integrity of

shared data stored in the cloud server.

When a public verifier wishes to check the

integrity of shared data, it first sends an auditing

challenge to the cloud server. After receiving the

auditing challenge, thecloud server responds to the

public verifier with an auditing proof of the

possession of shared data. Then, this public verifier

checks the correctness of the entire data by

verifying the correctness of the auditing proof.

Essentially, the process of public auditing is a

challenge-and-response protocol between a public

verifier and the cloud server.

2) Threat Model

Integrity Threats.Two kinds of threats related to

the integrity of shared data are possible. First, an

adversary may try to corrupt the integrity of shared

data. Second, the cloud service provider may

inadvertently corrupt data in its storage due to

hardware failures and human errors. Making

matters worse, the cloud ser-vice provider is

economically motivated, which means it may be

reluctant to inform users about such corruption of

data in order to save its reputation and avoid losing

profits of its services.

Privacy Threats. The identity of the signer on each

blockin shared data is private and confidential to the

group. During the process of auditing, a public

verifier, who is only allowed to verify the

correctness of shared data integrity, may try to

reveal the identity of the signer on each block in

shared data based on verification metadata. Once

the public verifier reveals the identity of the signer

on each block, it can easily distinguish a high-value

target from others.

3) Design Objectives

Our mechanism, Oruta, should be designed to

achieve following properties: (1) Public Auditing:

A public verifier is able to publicly verify the

integrity of shared data without retrieving the entire

data from the cloud. (2) Correctness: A public

verifier is able to correctly verify shared data

integrity. (3) Unforgeability: Only a user in the

group can generate valid verification metadata on

shared data. (4) Identity Privacy: A public verifier

cannot distinguish the identity of the signer on each

block in shared data during the process of auditing.

4) Possible Alternative Approaches

To preserve the identity of the signer on each block

during public auditing, possible alternative

approach is to ask all the users of the group to share

a global privatekey. Then, every user is able to sign

blocks withthis global private key. However, once

one user of the group is compromised or leaving the

group, a new global private key must be generated

and securely shared among the rest of the group,

which clearly introduces huge overhead to users in

terms of key management and key distribution.

While in our solution, each user in the rest of the

group can still utilize its own private key for

computing verification metadata without generating

or sharing any new secret keys.

Another possible approach to achieve identity

privacy, is to add a trusted proxy between a group

of users and the cloud in the system model. More

concretely, each member’s data is collected, signed,

and uploaded to the cloud by this trusted proxy,

then a public verifier can only verify and learn that

it is the proxy signs the data, but cannot learn the

identities of group members. Yet, the security of

this method is threatened by the single point failure

of the proxy. Besides, sometimes, not all the group

members would like to trust the same proxy for

International Journal on Applications in Information and communication Engineering

Volume 7 : Issue 4 : November 2021, pp 9 – 15 www.aetsjournal.com ISSN (Online) : 2394 – 6237

--

12

generating signatures and uploading data on their

behalf. Utilizing group signatures is also an

alternative option to preserve identity privacy.

Unfortunately, as shown in our recent work how to

design an efficient public auditing mechanism based

on group signatures remains open.

 Trusted Computing offers another possible

alternative approach to achieve the design

objectives of our mechanism.

III. PRELIMINARIES

In this section, we briefly introduce cryptographic

primitives and their corresponding properties that

we implement in Oruta.

1) Ring signature

With ring signatures, a verifier is convinced that a

signature is computed using one of group members’

private keys, but the verifier is not able to deter-

mine which one. More concretely, given a ring

signature and a group of d users, a verifier cannot

distinguish the signer’s identity with a probability

more than 1=d. This property can be used to

preserve the id entity of the signer from a verifier.

The ring signature scheme introduced to

constructed on bilinear maps. We will extend this

ring signature scheme to construct our public

auditing mechanism and Thump Impression

technique.

Homomorphic authenticators are basic tools to

construct public auditing mechanisms. Besides

unforgeability, a homomorphic authenticable

signature scheme satisfies block less verifiability

and non-malleability to audit the correctness of

shared data in the cloud server.

IV. NEW RING SIGNATURE SCHEME

1) Overview

As we introduced in previous sections, we intend

to utilize ring signatures to hide the identity of the

signer on each block, so that private and sensitive

information of the group is not disclosed to public

verifiers. However, traditional ring signatures

cannot be directly used into public auditing

mechanisms, because these ring signature schemes

do not support blockless verifiability. Without

blockless verifiability, a public verifier has to

download the whole data file to verify the

correctness of shared data, which consumes

excessive bandwidth and takes very long

verification times.

Therefore, we design a new homomorphic

authenticable ring signature (HARS) scheme, which

is extended from a classic ring signature scheme.

The ring signatures generated by HARS are not

only able to preserve identity privacy but also able

to support blockless verifiability. We will show how

to build the privacy-preserving public auditing

mechanism for shared data in the cloud based on

this new ring signature scheme in the next section.

2) Construction of HARS

HARS contains three algorithms: KeyGen,

RingSign and RingVerify. In KeyGen, each user in

the group generates his/her public key and private

key. In RingSign, a user in the group is able to

generate a signature on a block and its block

identifier with his/her private key and all the group

members’ public keys. A block identifier is a string

that can distinguish the corresponding block from

others. A verifier is able to check whether a given

block is signed by a group member in RingVerify.

V. PUBLIC AUDITING MECHANISM

1) Overview

Using HARS and its properties we established in

the previous section, we now construct Oruta, a

privacy-preserving public auditing mechanism for

shared data in the cloud. With Oruta, the public

verifier can verify the integrity of shared data

without retrieving the entire data. Meanwhile,the

identity of the signer on each block in shared data is

kept private from the public verifier during the

auditing.

2) Reduce Signature Storage

Another important issue we should consider in the

construction of Oruta is the size of storage used for

ring signatures. According to the generation of ring

signatures in HARS, a block m is an element of Zp

and its ring signature contains d elements of G1,

where G1 is a cyclic group with order p. It means a

bit block requires a bit ring signature, which forces

users to spend a huge amount of space on storing

International Journal on Applications in Information and communication Engineering

Volume 7 : Issue 4 : November 2021, pp 9 – 15 www.aetsjournal.com ISSN (Online) : 2394 – 6237

--

13

ring signatures. It will be very frustrating for users,

because cloud service providers, such as Amazon,

will charge users based on the storage space they

use.

The length of a ring signature is only d=k of the

length of a block. Similar methods to reduce the

storage space of signatures can also be found in

[15]. Generally, to obtain a smaller size of a ring

signature than the size of a block, we choose k > d.

As a trade-off, the communication cost of an

auditing task will be increasing with an increase of

k

3) Support Dynamic Operations

 To enable each user in the group to easily modify

data in the cloud, Oruta should also support

dynamic operations on shared data. A dynamic

operation includes an insert, delete or update

operation on a single block. However, since the

computation of a ring signature includes an

identifier of a block, traditional methods, which

only use the index of a block as its identifier, are not

suitable for supporting dynamic operations on

shared data efficiently.

The reason is that, when a user modifies a single

block in shared data by performing an insert or

delete operation, the indices of blocks that after the

modified block are all changed, and the changes of

these indices require users, who are sharing the

data, to re-compute the signatures of these blocks,

even though the content of these blocks are not

modified.

By utilizing an index hash table, switch is a data

structure indexing each block based on its hash

value, our mechanism can allow a user to efficiently

perform a dynamic operation on a single block, and

avoid this type of re-computation on other blocks.

Examples of different dynamic operations on shared

data with our index hash tables are described in

Figs. 5 and 6.

Specifically, the value of r generated by H2 ensures

that each block has a unique identifier. The virtual

indices are able to ensure that all the blocks in

shared data are in the right order. For example, if

vi<vj, then block mi is ahead of block mj in shared

data. When shared data is created by the original

user.

To support dynamic data without the above

assumption, the combination of coding techniques

and Oblivious RAM can be utilized as introduced in

recent work. Unfortunately, this proposed solution

requires much more computation and

communication overhead.

4) Construction of Oruta

 Now, we present the details of our public auditing

mechanism. It includes five algorithms: KeyGen,

SigGen, Modify, ProofGen and ProofVerify. In

KeyGen, users generate their own public/private

key pairs. In SigGen, a user is able to compute ring

signatures on blocks in shared data by using its own

private key and all the group members’ public keys.

Each user in the group is able to perform an insert,

delete or update operation on a block, and compute

the new ring signature on this new block in Modify.

ProofGen is operated by a public verifier and the

cloud server together to interactively generate a

proof of possession of shared data. In ProofVerify,

the public verifier audits the integrity of shared data

by verifying the proof.

The main reason of this type of re-computation on

signatures introduced by dynamic groups, is

because the generation of a ring signature under our

mechanism requires the signer’s private key and all

the current members’ public keys. An interesting

problem for our future work will be how to avoid

this type of re-computation introduced by dynamic

groups while still preserving identity privacy from

the public verifier during the process of public

auditing on shared data.

5) Batch Auditing

 Sometimes, a public verifier may need to verify

the correctness of multiple auditing tasks in a very

short time. Directly verifying these multiple

auditing tasks separately would be inefficient. By

leveraging the properties of bilinear maps, we can

further extend Oruta to support batch auditing,

which can verify the correctness of multiple

auditing tasks simultaneously and improve the

efficiency of public auditing.

International Journal on Applications in Information and communication Engineering

Volume 7 : Issue 4 : November 2021, pp 9 – 15 www.aetsjournal.com ISSN (Online) : 2394 – 6237

--

14

VI. PERFORMANCE

1) Computation Cost

 During auditing, the public verifier first generates

some random values to construct an auditing

challenge, which only introduces a small cost in

computation. Then, after receiving the auditing

challenge, the cloud server needs to compute

auditing proof.

2) Communication Cost

The Communication cost of Oruta is mainly

introduced by two aspects: the auditing challenge

and auditing proof. The communication cost of one

auditing proof is in bit value.

VII. COMPARISION

 Provable data possession (PDP), proposed by

Ateniese et al, allows a verifier to check the

correctness of a client’s data stored at an untrusted

server. By utilizing RSA-based homomorphic

authenticators and sampling strategies, the verifier

is able to publicly audit the integrity of data without

retrieving the entire data, which is referred to as

public auditing. Unfortunately, their mechanism is

only suitable for auditing the integrity of personal

data. Juels and Kaliski defined another similar

model called Proofs of Retrievability (POR), which

is also able to check the correctness of data on an

untrusted server. The original file is added with a

set of randomly valued check blocks called

sentinels. The verifier challenges the untrusted

server by specifying the positions of a collection of

sentinels and asking the untrusted server to return

the associated sentinel values. Shacham and Waters

designed two improved schemes. The first scheme

is built from BLS signatures, and the second one is

based on pseudo-random functions.

To support dynamic data, Ateniese et al. presented

an efficient PDP mechanism based on symmetric

keys. This mechanism can support update and

delete operations on data, however, insert

operations are not available in this mechanism.

Because it exploits symmetric keys to verify the

integrity of data, it is not publicly verifiable and

only pro-vides a user with a limited number of

verification requests. Wang et al. utilized Merkle

Hash Tree and BLS signatures to support dynamic

data in a public auditing mechanism. Erway et al.

Introduced dynamic provable data possession

(DPDP) by using authenticated dictionaries, which

are based on rank information. Zhu et al. Exploited

the fragment structure to reduce the storage of

signatures in their public auditing mechanism. In

addition, they also used index hash tables to provide

dynamic operations on data. The public mechanism

proposed by Wang et al and its journal version can

preserve users’ confidential data from a public

verifier by using random maskings. In addition, to

operate multiple auditing tasks from different users

efficiently, they extended their mechanism to enable

batch auditing by leveraging aggregate signatures.

Wang et al leveraged homomorphic tokens to

ensure the correctness of erasure codes-based data

distributed on multiple servers. This mechanism is

able not only to support dynamic data, but also to

identify misbehaved servers. To minimize

communication overhead in the phase of data repair,

Chen et al. also introduced a mechanism for

auditing the correctness of data under the multi-

server scenario, where these data are encoded by

network coding instead of using erasure codes.

More recently, Cao et al. constructed an LT codes-

based secure and reliable cloud storage mechanism.

Compared to previous work this mechanism can

avoid high decoding computation cost for data users

and save computation resources for online data

owners during data repair.

VIII. CONCLUSION

In this paper, we propose Oruta, a privacy-

preserving public auditing mechanism for shared

data in the cloud. We utilize ring signatures to

construct homomorphic authenticators, so that a

public verifier is able to audit shared data integrity

without retrieving the entire data, yet it cannot

distinguish who is the signer on each block. To

improve the efficiency of verifying multiple

auditing tasks, we further extend our mechanism to

support batch auditing and thump technique. By

using thump technique, we give high level security

for shared data in cloud server. So, the hacker does

not able to retrieve the data without the permission

of authenticated persons.

International Journal on Applications in Information and communication Engineering

Volume 7 : Issue 4 : November 2021, pp 9 – 15 www.aetsjournal.com ISSN (Online) : 2394 – 6237

--

15

 We will continue to study for our future work.

One of them is traceability, which means the ability

for the group manager to reveal the identity of the

signer based on verification metadata in some

special situations. Since oruta is based on ring

signatures, where the identity of the signer is

conditionally protected [x1], To the best of our

knowledge, designing an efficient public auditing

mechanism with the capabilities of preserving

identity privacy and supporting traceability is still

open. situations. Since oruta is based on ring

signatures, where the identity of the signer is

conditionally protected [x1], To the best of our

knowledge, designing an efficient public auditing

mechanism with the capabilities of preserving

identity privacy and supporting traceability is still

open.

REFERENCES

[1] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner,

Z. Peterson, and D. Song, ―Provable Data Possession at

Untrusted Stores,‖ Proc. 14th ACM Conf. Computer and

Comm.Security (CCS ’07), pp. 598-610, 2007.

[2] H. Shacham and B. Waters, ―Compact Proofs of

Retrievability,‖ Proc. 14th Int’l Conf. Theory and

Application of Cryptology and Infor-mation Security:

Advances in Cryptology (ASIACRYPT ’08), pp. 90-107,

2008.

[3] C. Erway, A. Kupcu, C. Papamanthou, and R. Tamassia,

―Dynamic Provable Data Possession,‖ Proc. 16th ACM

Conf. Com-puter and Comm. Security (CCS’09), pp. 213-

222, 2009.

[4] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou, ―Enabling

Public Verifiability and Data Dynamic for Storage

Security in Cloud Computing,‖ Proc. 14th European Conf.

Research in Computer Security”

[5] C. Wang, Q. Wang, K. Ren, and W. Lou, ―Ensuring Data

Storage Security in Cloud Computing,‖ Proc. 17th Int’l

Workshop Quality ofService (IWQoS’09), pp. 1-9, 2009.

[6] S.S Yau, ―Dynamic Audit Services for Integrity

Verification of Outsourced Storages in Clouds,‖ Proc.

ACM Symp. Applied Computing(SAC’11), pp. 1550-1557,

2011.

[7] N. Cao, S. Yu, Z. Yang, W. Lou, and Y.T. Hou, ―LT

Codes-Based Secure and Reliable Cloud Storage Service,‖

Proc. IEEE INFO-COM, 2012.

[8] R.L. Rivest, A. Shamir, and Y. Tauman, ―How to Leak a

Secret,‖ Proc. Seventh Int’l Conf. Theory and Application

of Cryptology and Information Security: Advances in

Cryptology (ASIACRYPT’01),552-565, 2001.

[9] D. Cash, A. Kupcu, and D. Wichs, ―Dynamic Proofs of

Retriev-ability via Oblivious RAM,‖ Proc. 32nd Ann. Int’l

Conf. Theory andApplications of Cryptographic

Techniques: Advances in Cryptology (EUROCRYPT), pp.

279-295, 2013.

[10] S. Yu, C. Wang, K. Ren, and W. Lou, ―Achieving

Secure, Scalable, and Fine-Grained Data Access Control in

Cloud Computing,‖ Proc. IEEE INFOCOM, pp. 534-542,

2010.

