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Abstract —To improve the reliability of wind 

turbines, various condition monitoring systems 

(CMSs) have been developed and most of them 

transmit data using wired communication channels. 

Recently, wireless sensor networks (WSNs) have 

been used to transmit data in wind turbine CMS due 

to the low cost and easy deployment feature of 

WSNs. However, since wind turbines are installed in 

harsh environments, the sensors and sensor nodes 

used in the WSN-based wind turbines CMSs are 

easily subject to faults, leading to corruption of the 

signals used for condition monitoring, which 

decreases the reliability of the CMS. This paper 

proposes a three-stage method for detection and 

isolation of three most common sensor faults, i.e., 

SHORT fault, CONSTANT fault, and NOISE fault, in 

WSN-based wind turbine CMS. The proposed sensor 

fault detection and isolation (SFDI) greatly increases 

the accuracy and reliability of wind turbine CMSs. 

Data collected from wind turbines in the field are 

used to validate the effectiveness of the proposed 

method.  

Index Terms—Condition monitoring system (CMS), 

cross-correlation, dynamic time warping (DTW), 

fault diagnosis, sensor fault, wavelet transform, wind 

turbine, wireless sensor network (WSN). 
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I. INTRODUCTION 

IND turbine condition monitoring technologies 

have been widely adopted in recent years to 

provide diagnostic information on the health condition 

of various wind turbine components and subsystems, 

which allows maintenance to be scheduled and taken 

before a failure or a critical malfunction occurs. 

Compared with offline condition monitoring techniques 

which require the wind turbine to be taken out of 

service to allow inspection by maintenance personnel, 

online condition monitoring enjoys the benefit of no 

interruption on the wind turbine operation and provides 

a deeper insight into the condition of wind turbine 

components and subsystems [1].   

  The online condition monitoring systems (CMSs) can 

be classified according to the type of sensors used (e.g., 

vibration, acoustic, temperature, etc.) or the method of 

data transmission (e.g., wired or wireless). Most 

commercially available wind turbine drivetrain CMSs 

use vibration signals because most drivetrain faults and 

defects will excite new vibration modes or change the 

existing vibration modes of the drivetrains.  

  A disadvantage of the vibration-based CMS is that 

vibration sensors and the associated data acquisition 

equipment have high costs. Moreover, the performance 

of vibration-based CMS depends on the locations of 

vibration sensors. The diagnosis accuracy will reduce if 

the sensors are placed far away from the vibration 

source.  

  Recently, wind turbine generator current signals have 

been used successfully for fault diagnosis of wind 

turbine blades, shaft, bearings, and gearboxes [2]-[5].   

Compared to vibration signals, the use of generator 

current signals for drivetrain condition monitoring has 

the advantage of lower cost, nonintrusive, and 

independence of sensor locations. In [6], a comparative 

study on vibration- and current-based approaches was 

conducted; the effectiveness of a current-based method 

for wind turbine gearbox fault diagnosis was validated; 

Sensor Fault Detection and Isolation for a 

Wireless Sensor Network-Based Remote 

Wind Turbine Condition Monitoring System 

 Mrs.C.Rajeswari, S.Siva,  S.Pasupathi, G.Vijay  , T.Prakash 

W 



International Journal on Applications in Electrical and Electronics Engineering  

Volume 6 : Issue 2: August 2020, pp 10 – 18 www.aetsjournal.com                                                    ISSN (Online) : 2395 - 3527 -

-----------------------------------------------------------------------------------------------------------------------------------------------------  

11 

 

and it concluded that current signals were less sensitive 

to environment noise. However, sensors are subject to 

failures. It has been reported that sensor failures account 

for more than 14% of failures in wind turbines [7].   

  In the traditional CMSs for electric power system 

assets, condition monitoring data are mostly transmitted 

through wired communication channels. This requires 

installation of dedicated communication cables and 

regular maintenance. Compared to wired 

communication systems, wireless communication 

systems, such as wireless sensor network (WSN), have 

the advantages of easier installation and lower capital, 

installation, and maintenance costs [8] and, therefore, 

provide an alternative and promising technology for 

transmitting condition monitoring data to enhance the 

reliability of the electric power system assets. In this 

paper, WSN is adopted for collecting and transmitting 

generator stator current signals for wind turbine health 

condition monitoring and fault diagnosis.  

  However, the data received from a WSN can be 

corrupted due to malfunctions of sensors or sensor 

nodes or interference in the communication channels, 

which will reduce the accuracy of condition monitoring 

and fault diagnosis or even lead to false fault diagnosis. 

Fault-tolerant protocols have been used to verify and 

correct corrupted data due to interference in 

communication channels [9]. Therefore, only data 

corruptions caused by malfunctions of sensors and 

sensor nodes are considered in this paper and they are 

both called sensor faults in this paper.  

  This paper proposes a sensor fault detection and 

isolation (SFDI) method for the wind turbine condition 

monitoring data received from the WSN. After the 

SFDI, only the data from healthy sensors will be used 

for health condition monitoring; while the data from 

faulty sensors will be restored or discarded depending 

on the fault types. In this paper, the sensor faults are 

defined from a “data-centric” point of view. Three types 

of faults have been observed in the data of real-world 

applications: single-sample spikes (called a SHORT 

fault), anomalous   constant offset (called a 

CONSTANT fault), and long duration noise (called a 

NOISE fault) [10].  

  These faults can be caused by malfunctions of 

hardware and/or software. Typical hardware-caused 

sensor faults include sensor damage, short circuits, low 

battery, and calibration errors. Software faults typically 

influence the data logging process and result in 

abnormal data, such as a SHORT fault. Several sensor 

fault detection methods have been proposed, which, in 

general, fall into four categories: rule-based method, 

estimation-based method, time-series-analysis-based 

method, and learning-based method [11]. For example, 

the reference [12] used multiple model adaptive 

estimation methods for sensor fault detection in a 

mobile robot. The work [13] developed a cross-

validation-based technique for online detection of 

sensor faults. Reference [14] detected sensor faults 

based on the residuals calculated from observed and 

measured signals. Most of these methods required either 

historical data or a model of the system being 

monitored. Moreover, little work has been reported on 

SFDI of wind turbines [1].  

  According to the fault characteristics, this paper 

proposes different methods for detection and isolation 

of different types of sensor faults [15]. Specifically, a 

wavelet transform-based method is proposed for 

SHORT fault detection and isolation; a cross-

correlation-based method is proposed for CONSTANT 

fault detection and isolation; and a dynamic time 

warping (DTW) based method is proposed for NOISE 

fault detection and isolation. None of these methods 

requires a model of the wind turbine and all of them can 

be applied online for SFDI. The proposed SFDI 

methods are applied to the WSN-based wind turbine 

CMS to improve its reliability.  

  The rest of this paper is organized as follows. Section 

II describes the proposed SFDI methods for a WSN-

based wind turbine condition monitoring system. 

Section III presents experiment validation of the 

proposed method for SFDI of wind turbines equipped 

with a WSN-based condition monitoring system. 

Concluding remarks are provided in Section IV. 

 

  
Fig. 1.  Framework of a WSN-based wind turbine CMS.  

 

II. PROPOSED SFDI METHODS FOR A WSN-

BASED WIND TURBINE CONDITION 

MONITORING SYSTEM 

  The framework of the proposed WSN-based wind 

turbine condition monitoring system is shown in Fig. 1. 

First, condition monitoring signals, such as three-phase 

generator stator current signals, are acquired by the 

sensor node(s) installed in the wind turbine. Then, the 

data are transmitted wirelessly and received by the 

gateway located in the control center or substation of 

the wind turbine or wind farm.  

  Then, the data are transmitted to a server through 

wired communication such as Ethernet and stored on a 

server. Next, the data are downloaded from the server 

through wired or wireless communication. The signals 

received might be corrupted due to sensor faults. To 

solve this problem, SFDI is implemented for the data 
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downloaded from the server. After the SFDI, only the 

healthy signals are used for condition monitoring of the 

wind turbine to ensure the accuracy and reliability of the 

CMS.   

The framework of the proposed SFDI is shown in Fig. 

2, which consists of three stages. The first stage uses a 

wavelet-transform-based method to decompose the 

signal into detail coefficients and approximation 

coefficients for the detection of SHORT faults. Once a 

SHORT fault is detected, the corrupted data is restored 

by an interpolation method. The second stage is the 

detection of CONSTANT faults using a cross-

correlation-based method. When there is no fault in the 

three-phase current signals, they are highly correlated 

with each other. However, when a CONSTANT fault 

occurs, the correlation between the corrupted signal and 

the healthy signal will become weaker. 

 

  
Fig. 2.  Framework of the proposed SFDI method.  

This information will be used for CONSTANT fault 

detection and isolation and only the healthy signal(s) 

will be used for condition monitoring. The third stage 

uses a DTW-based method to detect NOISE faults. The 

DTW-based method measures the similarity of the 

signals. If a signal is corrupted by a NOISE fault and 

the others do not, the similarity between the corrupted 

and healthy signals will decrease.  

  This information will also be used for NOISE fault 

isolation. By detecting and isolating the corrupted 

signal(s), only the healthy signal(s) are used for 

condition monitoring and fault diagnosis. Therefore, the 

reliability and accuracy of the CMS is improved. 

Diagnosis of sensor faults has rarely been discussed in 

the literature on wind turbine condition monitoring. In 

fact, the quality of collected condition monitoring data 

affects the accuracy and reliability of the fault diagnosis 

result; and corrupted data may even lead to a false fault 

diagnostic result [15].  

 

A. WAVELET TRANSFORM-BASED SHORT FAULT 

DETECTION AND ISOLATION 

  A SHORT fault refers to the occurrence of single-

sample spikes in sensor readings. It was reported that a 

short circuit in a sensor node may cause a SHORT fault 

[11]. Therefore, detecting this type of fault is important 

to evaluating the health condition of the sensor node. If 

a SHORT fault is detected multiple times during a 

specified period, it indicates that maintenance is needed; 

otherwise, the sensor node will be damaged. The 

diagnosis of a SHORT fault requires a time-domain 

localized analysis for the signal. Wavelet transform, 

which decomposes a signal into elementary building 

blocks that are well localized in both time and 

frequency, can characterize the local regularity of the 

signal [16] and, therefore, is adopted for SHORT fault 

detection. A function ψ. ( )t is said to be a wavelet if and 

only if its Fourier transform ψ. ˆ (ω) satisfies the 

following condition [16]:  

0+∞ψωˆ() 2 dω= −0∞ψωˆ (ω) 2 dω= cψ<+∞     (1)  

I.  Ω 

where cψ is a constant and depends on the wavelet used. 

A set of template wavelets can be obtained by scaling 

and shifting the base wavelet ψ. ( )t as follows:  

ψ. s u, ( )t = 1 ψ(
t − u 

)                          (2)  s 

where s>0 represents the scaling parameter, which 

determines  

the time and frequency resolutions of the wavelet ψ(t 

−u) s 

obtained from the scale operation. The specific values 

of s are inversely proportional to the frequency. The 

symbol u is the shifting parameter, which translates the 

scaled wavelet along the time axis [17].  

The wavelet transform of a signal x(t) is defined by:  

wtx s u x tt dt                   (3)  

When the scaling and shifting parameters are 

discretized, the corresponding wavelet transform is 

called discrete wavelet transform (DWT). The DWT 

uses a pair of low-pass and high-pass wavelet filters, 

denoted as h(k) and g(k) = (−1)kh(1−k), respectively, to 

decompose the signal. These filters, also known as 

Quadrature Mirror Filters, are constructed from a 

selected base wavelet function and scaling function [17] 

and a detailed discussion was provided in [18].   

To detect a SHORT fault, the discrete signal x[n] is 

decomposed into low frequency approximation 

coefficients ylow[n] and high frequency detail 

s 
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coefficients yhigh[n]. The one level decomposition of 

x[n] is done by convolution of x[n] with g[n] and h[n] 

expressed as follows. yhigh[ ]n =x n g n[ ]* [ ]                         

(4) ylow[ ]n = x n[ ]* [ ]h n                           (5)  

A SHORT fault appears as abrupt changes (i.e., spikes) 

of one or multiple data samples in each specific period. 

The high frequency component of the abrupt changes 

appears as spikes in the detail coefficients, and the 

locations of the spikes in the detail coefficients indicate 

the locations of the corrupted data samples in the 

original signal caused by the SHORT fault. Therefore, 

the SHORT fault can be detected and isolated from the 

detail coefficients of the signal. When a SHORT fault is 

detected and isolated, the corrupted data samples of the 

signal can be restored by an interpolation method, such 

as replacing them using the average values of the data 

samples before and after them.  

B. Cross-Correlation-Based CONSTANT Fault 

Detection and Isolation  

A CONSTANT fault is also called a “stuck-at” fault. 

When it occurs, the values of data samples experience a 

zero or near-zero variation in a period of time longer 

than expected. This type of fault is often caused by a 

sensor hardware malfunction [11]. The traditional 

method of detecting this type of fault is judging whether 

the variation is zero for a certain period. However, it is 

hard to determine the length of the period. To solve this 

problem, a cross-correlation-based method is proposed 

to detect this type of fault. The cross-correlation 

function R12(τ) between two different signals x1(t) and 

x2(t) is a measure of similarity between one signal and 

the time delayed version of another signal and is defined 

by:  

+∞ 

R12 ( )τ = 
−∞ x t x1( ) 2(t −τ)dt                 (6)  

where τ  is the delay parameter or searching parameter, 

which is the time shift of one of the two signals [19]. 

For any three-phase signals, when τ is equal to the time 

delay between any two of them, R12(τ) will reach the 

maximum value r12, which is denoted by:  

r12=max(R12(τ))                          (7)  

When three-phase current signals are in a healthy 

condition, they are correlated with each other with a 

phase delay. If a CONSTANT fault occurs in a signal, 

the cross-correlations between the faulty signal and the 

healthy signals will decrease. Therefore, a CONSTANT 

fault can be detected and isolated according to the 

summation ri of the cross-correlations between each 

signal and other signals.  

ri = nj = 1, j ≠ irij                      (8)  

where i and j are indices of signals and n the is total 

number of signals. If the ith signal has a CONSTANT 

fault, it will have a smaller ri value than the other 

healthy signals. Unlike a SHORT fault in which only a 

single or a few data samples are corrupted, in a 

CONSTANT fault, more data samples are corrupted and 

some important information of the signal is lost. 

Therefore, once a CONSTANT fault is detected and 

isolated, the faulty signal is discarded and maintenance 

is needed for the faulty sensor if the faulty signal is 

critical to the control and operation of the wind turbine. 

C. DTW-Based NOISE Fault Detection and Isolation  

While noise is commonly present in sensor data, if the 

noise level is unusually high, there might be a sensor 

problem. An unusually high level noise may be due to a 

hardware failure or low battery [20]. When a NOISE 

fault occurs, the cross-correlations between the three-

phase signals may not reduce. Therefore, the cross-

correlation method is not sensitive to NOISE faults. 

Another commonly used method of measuring the 

similarity between two signals is Euclidean distance. 

However, Euclidean distance is effective only when the 

signals are in phase, but will produce a poor result if the 

signals are out of phase, which is the case of three-phase 

current signals. This paper proposes to use DTW 

distance to solve the problem of measuring the 

similarity between signals that are out of phase.   

The DTW distance of two signals is computed by 

finding the best alignment between them. Suppose that 

the lengths of two signals x1 and x2 are n and m, 

respectively. To align these two signals, an n × m matrix 

is constructed. The element (i, j) (i = 1, 2, ⋅⋅⋅, n and j = 

1, 2, ⋅⋅⋅, m) of the matrix is equal to (x1[i]-x2[j])2, which 

represents the cost to align the point x1[i] with the point 

x2[j]. An alignment between the two signals is 

represented by a warping path W = [w1, w2, ⋅⋅⋅, wk, ⋅⋅⋅, 
wK], where K is the length of the warping path satisfying 

max(m, n) ≤ K < (m+n−1). The kth element of W is wk = 

(i, j)k, which represents the ith and jth data samples of x1 

and x2, respectively. There are many warping paths in 

the matrix, e.g., x1[i] can be aligned with x2[j] or x2[j+1], 

x2[j+2], ⋅⋅⋅. The best alignment is then given by a 

warping path that minimizes the total cost of aligning 

the data samples of x1 and x2, and the corresponding 

minimum total cost is called DTW distance DTW(x1,x2) 

expressed as follows [21]-[24]. DTW (x x1, 2 ) = arg 

min  kK=1,wk =(i j, ) (x i1[ ] x [ ])j 2      (9)  

− 2W 

The three-phase current signals collected from a wind 

turbine are out of phase and the DTW distance can be 

used to measure their similarity. In the case of more 

than two signals, the similarity between one signal xi 

and the other signals can be measured by the total DTW 

distance Di between the signal xi and the other signals 

expressed as follows.  
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         n 

             Di =  j=1, j≠i DTW (xi , x j )                  (10)  

where i and j are indices of the signals and n the is total 

number of the signals. If the ith signal is corrupted by a 

NOISE fault, its Di value will be larger than those of 

other healthy signals. In this way, the NOISE fault can 

be detected and isolated. 

III.EXPERIMENTAL VALIDATION 

A. Experiment Setup  

Experimental studies are carried out for wind turbines 

equipped with WSN-based condition monitoring 

systems, as shown in Fig. 3 for one wind turbine used 

in the studies. The WSN consists of one or multiple 

wireless sensor nodes at the sending end and one 

gateway at the receiving end. One wireless sensor node 

(Model: V-Link®-LXRS®) is installed in the wind 

turbine to collect three-phase generator stator current 

signals at a sampling frequency of 1,000 Hz for 15 

seconds as a data record. 

  

Fig. 3.  Experiment Setup. 

Thus, each data record contains 15,000 data samples. 

The data records are collected continuously with certain 

time intervals, such as four hours. The gateway (Model: 

WSDA®-1500-LXRS®) receives data from the wireless 

sensor node(s) and uploads the data to SensorCloudTM 

through Ethernet. SensorCloudTM is a network server for 

storing data, which can be downloaded to a terminal 

computer through Ethernet. The data downloaded are 

then used by the fault diagnostic algorithms 

implemented on the computer for SFDI and other wind 

turbine fault diagnosis.  

 

B. SHORT Fault Detection, Isolation, and Restoration  

 

A SHORT fault causes an abrupt change (i.e., spike) in 

the signal. When the amplitude of the spike is much 

higher than the amplitude of the signal, the spike can be 

easily detected by comparing the maximum of the 

signal with a threshold. The purpose of the proposed 

method is to detect the SHORT fault where the 

magnitude(s) of the spike(s) are comparable to the 

signal amplitude and, therefore, are difficult to detect 

from the signal. To solve this problem, the proposed 

DWT-based method decomposes the signal into the 

high frequency detail coefficients and low frequency 

approximation coefficients. Fig. 4 shows a stator phase 

current signal with a SHORT fault and the one layer 

decomposition of the corrupted current signal by the 

DWT, where the SHORT fault appears clearly as an 

abrupt change in the detail coefficient of the signal and, 

therefore, can be easily detected by the proposed 

method; and the corrupted data sample can be easily 

isolated.  

Each corrupted data sample is restored by replacing it 

with the average value of the data samples before and 

after it. Fig. 5 shows the restored signal. Compared with 

the traditional method using a low-pass filter to filter 

out the spikes from the signal, the proposed method 

does not filter out useful information from the signal, 

but only remedies the corrupted data sample(s).  

 
(a)  

 
(b)  

  
                                              (c)  
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Fig. 4.  Detection and isolation of a SHORT fault: (a) 

the corrupted stator phase current signal, (b) the 

approximation coefficients of the signal; and (c) the 

detail coefficients of the signal.  

D. CONSTANT Fault Detection and Isolation  

 

A CONSTANT fault is shown in Fig. 6 where phase-A 

current is “stuck” at ±11 A periodically. However, 

simply judging whether the variation is zero during a 

certain period is not a persuasive method because it is 

hard to determine the length of the period. Moreover, 

in a time interval of each switching period when the 

power converter is not conducting, the variation of the 

corresponding current signal may also be zero. 

  

 
Fig. 5.  Stator phase current signal after fault restoration. 

Since a CONSTANT fault causes a decrease in the 

cross- correlation between the faulty signal and the 

healthy signals,  

 
Fig. 6.  Three-phase stator current signals with a 

CONSTANT fault in ia. 

  

 
Fig. 7.  Cross-correlation 

between ia and ib. 

                                    TABLE I 

CROSS-CORRELATIONS BETWEEN CURRENT 

SIGNALS 

rab rbc rac rac rac rac ra rb rc 

2.04

◊104 

2.67

◊104 

2.01

◊104 

2.01

◊104 

2.01

◊104 

2.01

◊104 

4.05

◊104 

4.71

◊104 

4.68

◊104 

 this type of fault. Fig. 7 shows the cross-correlation 

between phase-A and phase-B current signals. The 

cross-correlation reaches the maximum value when the 

data sample shift is 23. The method is also applied to 

calculate the cross-correlations between phase-B and 

phase-C and between phase-A and phase-C current 

signals. The maximum cross-correlations between the 

three-phase current signals are shown in Table I. It is 

obvious that phase-A current signal is less correlated 

with either phase-B or-phase C current signal and the 

summations of the cross-correlations of the phases A, 

B, and C with the other two phases, ra, is smaller than 

rb and rc. Thus, a CONSTANT fault occurs in the 

phase-A current signal. When a CONSTANT fault is 

detected and isolated, the faulty signal will be 

discarded and not be used for condition monitoring of 

the wind turbine.  

            E.NOISE Fault Detection and Isolation  

The DTW aligns two current signals and measures the 

distance between the aligned signals. Noise will 

increase the DTW distance between two signals. 

Assume that the phase-A current signal is corrupted by 

injecting artificial noise in the signal, as shown in Fig. 

8(a). The amplitude of the noise is 10% of that of the 

signal. The resulting aligned phase-A and phase-B 

current signals are shown in Fig. 8(b). The method is 

also applied on the phase-B and phase-C as well as 

phase-A and  

  

                                                (a)                
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                                         (b)  

Fig. 8.  A NOISE fault in the phase-A current signal: (a) 

original phase-A and phase-B current signals and (b) 

aligned current signals.  

TABLE II 

DTW DISTANCE BETWEEN ALIGNED 

CURRENT SIGNALS 

DTW 

(ia, ib) 

DTW 

(ia, ic) 

DTW 

(ib, ic) 

Da Db Dc 

587 575 360 1162 947 935 

phase-C current signals. The DTW distances between 

any two of the three-phase current signals are compared 

in Table II. The DTW distances between phases A and 

B and between phases A and C are larger than that 

between phases B and C. As a result, Da is larger than 

Db and Dc. Therefore, the faulty phase-A signal is 

detected and isolated and should not be used for wind 

turbine condition monitoring.  

            F. Wind Turbine Fault Diagnosis Results  

A fault in a wind turbine drivetrain will typically excite 

a torsional vibration, which will modulate generator 

current signals. By detecting the fault characteristic 

frequency or frequencies in the sidebands of a current 

signal, the fault type in the drivetrain can be identified 

[25]. The corrupted or faulty signal(s) will reduce the 

accuracy of condition monitoring and fault diagnosis. 

Therefore, after the SFDI, only the healthy signal(s) or 

the signal(s) remedied from SHORT fault(s) are used 

for wind turbine fault diagnosis. To study the effect of 

different sensor faults on wind turbine fault diagnosis, a 

healthy generator stator phase current signal is first used 

as the baseline case. Fig. 9 shows the frequency 

spectrum around the fundamental frequency of the 

generator stator current signal. Due to the varying shaft 

rotating speed of the wind turbine, the collected current 

signals are nonstationary because the  

  
  

Fig. 9.  Frequency spectrum of the original generator 

stator phase current signal around the fundamental 

frequency.  

fundamental frequency and fault characteristic 

frequencies are proportional to the varying shaft rotating 

speed, causing a spectrum smearing problem. As a 

result, the sidebands of the fundamental frequency, 

which are the characteristic frequency components 

related to faults, cannot be easily detected.  

To solve the spectrum smearing problem and facilitate 

fault characteristic frequency identification, the 

synchronous resampling method proposed in [26] is 

used to resample the current signal with a constant 

phase increment in the angle domain. The resampled 

current signal becomes stationary, namely, the 

fundamental frequency and its sidebands become 

constant in the spectrum of the synchronously 

resampled current signal and, therefore, are easily 

detectable, as shown in Fig. 10(a). Two sidebands are 

visible, indicating that the current signal is modulated 

with the fault characteristic frequency. Therefore, the 

sidebands contain the information on the fault type. The 

sidebands in Fig. 10(a) are 1.2 Hz from the fundamental 

frequency, meaning that the fault characteristic 

frequency is 1.2 Hz, which is the characteristic 

frequency fFTFI of the main bearing cage fault of the 

wind turbine. Therefore, it can be inferred that the wind 

turbine has a cage fault in the main bearing. Fig. 10(b) 

shows the frequency spectrum of the synchronously 

resampled current signal that has a CONSTANT fault, 

in which the current amplitude is clamped at ±5 A. The 

CONSTANT fault decreased the amplitudes of the 

fundamental frequency component and its sidebands, 

thus making the fault diagnosis difficult. Fig. 10(c) 

shows the frequency spectrum of the synchronously 

resampled current signal with a NOISE fault. As a 

result, the sidebands are submerged in heavy noise, 

which again makes the fault diagnosis difficult.  
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IV. CONCLUSION 

In a WSN-based CMS, the sensor data can be corrupted 

due to sensor faults. This paper proposed three different 

methods implemented sequentially to detect and isolate 

three common sensor faults in the WSN-based wind turbine 

CMS, which are SHORT fault, CONSTANT fault, and 

NOISE fault. For a SHORT fault, the proposed wavelet 

transform based method could accurately detect and isolate 

the corrupted data sample(s), which could be restored by an 

interpolation method. A  

  
(a)  

  
(b)  

  
(c)  

Fig. 10.  Frequency spectrum of synchronously 

resampled current signal: (a) no sensor fault, (b) with a 

CONSTANT fault, and (c) with a NOISE fault.  

cross-correlation-based method was proposed to detect 

and isolate CONSTANT faults because they would 

cause a decrease in the cross-correlations between the 

corrupted and uncorrupted signals. Moreover, a DTW-

based method was proposed for detection and isolation 

of NOISE faults according to the similarity measured by 

the DTW distance between signals that are not in phase. 

After the SFDI, the synchronous resampling method 

was applied on the healthy current signal(s) for the wind 

turbine drivetrain fault diagnosis. The proposed method 

has been validated using the three-phase generator stator 

current data collected from wind turbines in the field in 

the cases of no sensor fault as well as CONSTANT and 

NOISE sensor faults, respectively. The results showed 

that the proposed method successfully detected and 

isolated all the sensor faults so that the wind turbine 

drivetrain fault diagnosis was performed successfully by 

using the signals from healthy sensors. Therefore, the 

proposed method improved the reliability of the wind 

turbine CMS.  
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