
International Journal on Applications in Information and Communication Engineering

Volume 9 : Issue 3 : August 2023, pp 16 – 20 www.aetsjournal.com ISSN (Online) : 2394 - 6237

- --

16

TELEOPERATED ROBOT USING GAZEBO &

ROS
K. Arockia Yamini

1
, K. Muthusamy

2
, S. Harish

3

1
Student, Rathinam Technical Campus, Coimbatore

2,3
 Assistant Professor, Rathinam Technical Campus, Coimbatore

Abstract: - Robotics and automation have advanced quickly, which has sparked the creation of complex frameworks to improve robot capabilities.

A crucial framework for developing modular, versatile, and adaptive robotic systems is the Robot Operating System (ROS). In this article, we

offer a comprehensive strategy that makes use of ROS's capabilities to empower autonomous navigation and flexible interaction in a robotic

platform. An autonomous robot robot using the Robot Operating System (ROS) that can explore and move across unstructured surroundings. The

Robot Operating System is a well-known open-source framework that is frequently used for creating and managing robots. It offers a versatile and

modular design for a variety of robotic applications. In this project, I make use of ROS's features to develop a robotic system that can successfully

investigate its surroundings while independently navigating across difficult terrain. To properly detect its surroundings, the suggested robot is

outfitted with a variety of sensors, including LIDAR, cameras, and inertial measurement units (IMUs). The sensor inputs are combined utilizing

the sensor fusion capabilities of ROS, allowing the robot to create an accurate picture of its surroundings and make defensible navigational and

obstacle avoidance judgments. The project entails developing a localization system that continually updates the robot's position inside the

surroundings using methods like Simultaneous Localization and Mapping (SLAM) in order to accomplish autonomous navigation. The robot will

be able to compute the best routes to attain preset goals while dynamically avoiding obstacles thanks to path planning algorithms coupled with

ROS's navigation stack. The results of this experiment might be used in a variety of industries, such as agriculture, disaster response,

environmental monitoring, and search and rescue operations.

Keywords: ROS (Robot Operating System), Robot control, Autonomous navigation, SLAM (Simultaneous Localization and Mapping), Human-

robot interaction, Multi-robot systems, Machine learning.

1. INTRODUCTION

The rapid advancements in robotics and automation have led

to transformative changes in various industries, enabling

robots to perform tasks that were once considered

challenging or even impossible. The Robot Operating System

(ROS), an open-source framework, has played a pivotal role

in revolutionizing the field of robotics by providing a

versatile platform for developing, simulating, and deploying

robotic systems. This project focuses on leveraging the

power of ROS to create an autonomous robot capable of

navigating and exploring unstructured environments.

Robots equipped with the ability to operate autonomously

hold great potential across a wide range of applications,

including disaster response, environmental monitoring,

precision agriculture, and industrial automation.

The ability to navigate through unknown and complex

environments, avoid obstacles, and make informed decisions

is essential for the successful deployment of such robots.

Through the integration of ROS's modular architecture and

various sensor technologies, this project aims to address

these challenges and showcase the capabilities of an

autonomous robot in a simulation environment.

II. PROPOSED MODEL

The advanced Robot Operating System (ROS) robot features

a sophisticated hardware model that combines cutting-edge

technologies to enable exceptional performance and

versatility. At its core, the robot is equipped with a high-

performance multi-core processor that handles complex

computations and sensor data fusion with efficiency. An

array of sensors, including LIDAR, depth cameras, IMUs,

and tactile sensors, provides comprehensive environmental

perception.

International Journal on Applications in Information and Communication Engineering

Volume 9 : Issue 3 : August 2023, pp 16 – 20 www.aetsjournal.com ISSN (Online) : 2394 - 6237

- --

17

These sensors enable simultaneous localization and mapping

(SLAM) capabilities, allowing the robot to navigate

autonomously in dynamic environments.

The robot's hardware extends to its robust mechanical design,

incorporating high-torque joints and precision actuators for

smooth and agile movement. With an integrated GPU, the

robot can perform real-time object recognition and

manipulation tasks, contributing to its advanced grasping and

interaction abilities. A high-capacity battery system powers

the robot for extended operation periods, while modular

expansion ports facilitate seamless integration of additional

hardware modules, such as custom end-effectors or

specialized sensors, tailored to specific tasks.

Advanced connectivity options, including 5G capabilities,

enhance the robot's remote operation and data exchange

capabilities, enabling seamless teleoperation and high-

bandwidth communication with remote operators. The

hardware architecture also prioritizes safety, incorporating

redundant systems and fail-safes to ensure reliable operation

in various scenarios.

In conclusion, the hardware model of the advanced ROS

robot represents a harmonious blend of computational power,

sensor diversity, mechanical precision, and connectivity

features. This combination empowers the robot to excel in a

wide range of applications, from autonomous navigation and

manipulation to human-robot collaboration, making it a

pivotal tool in modern robotics research and industry.

Block Diagram of proposed Hardware Model

The block diagram of the proposed hardware model is

illustrated in Fig. 1.

Fig. 1 Block Diagram of the proposed model

Determine the robot's intended application, whether it's for

research, exploration, education, or a specific task. Define

the size, weight, mobility, sensors, actuators, and other

requirements based on the application.

Choose the necessary hardware components such as

microcontrollers, sensors (LIDAR, cameras, IMUs, etc.),

actuators (motors, servos), power supply (batteries), chassis,

and any additional components required for your robot's

design.

Mechanical Design and Assembly:

Design the mechanical structure of the robot, keeping in

mind the placement of sensors, actuators, and other

components. Assemble the physical robot according to your

design.

Install ROS:

Install ROS on a computer or microcontroller that will act as

the robot's brain. ROS provides various distributions; choose

the one that suits your needs. Ubuntu Linux is often

recommended as the operating system for ROS.

International Journal on Applications in Information and Communication Engineering

Volume 9 : Issue 3 : August 2023, pp 16 – 20 www.aetsjournal.com ISSN (Online) : 2394 - 6237

- --

18

Create a ROS Workspace:

Set up a ROS workspace to organize your robot's software

packages. This is where you'll develop, compile, and manage

your robot's software components.

Develop ROS Nodes and Packages:

ROS operates on a node-based architecture. Develop ROS

nodes and packages to handle various functionalities of the

robot, such as sensor data processing, motor control,

mapping, navigation, and interaction.

Implement Sensors and Actuators:

Integrate and configure the sensors and actuators according

to your robot's requirements. Write ROS nodes to interface

with these hardware components, allowing data exchange

between them and the software environment.

Implement Perception and Control:

Develop perception algorithms to process sensor data,

perform object detection, SLAM (Simultaneous Localization

and Mapping), and obstacle avoidance. Create control

algorithms to maneuver the robot based on the sensory input.

Testing and Debugging:

Test your robot's individual components and functionalities.

Use tools like RViz (ROS Visualization) to visualize sensor

data, TF (Transform Library) to manage coordinate

transformations, and rosbag to record and replay data for

debugging.

Integration and System Testing:

Integrate all the components and functionalities of the robot.

Test the robot in controlled environments to ensure that it

performs as expected.

Calibration and Fine-Tuning:

Calibrate sensors and actuators to ensure accurate data and

precise movements. Fine-tune control algorithms to optimize

performance.

Documentation:

Document your robot's hardware design, software

architecture, ROS nodes, packages, and any other relevant

information. This will be helpful for troubleshooting,

maintenance, and sharing your work with others.

Deployment:

Once your ROS robot is fully functional and tested, deploy it

for its intended application. Monitor its performance and

make any necessary adjustments based

 In the context of a ROS (Robot Operating System) robot, a

system process refers to a self-contained computational unit

that performs a specific task within the robotic system. ROS

facilitates the organization and communication between

various system processes, allowing them to work together to

accomplish complex robotic tasks. These processes are often

implemented as ROS nodes, which are the fundamental

building blocks of ROS applications.

Fig. 2 ROS block diagram

RViz (ROS Visualization)

RViz is a powerful visualization tool within the Robot

Operating System (ROS) ecosystem that allows developers,

researchers, and roboticists to visualize and interact with

various aspects of a robot's perception and state. RViz

provides a real-time 3D visualization of data generated by

different sensors and robot components, aiding in debugging,

testing, and understanding the robot's behavior. It plays a

crucial role in the development and analysis of robotics

applications.

International Journal on Applications in Information and Communication Engineering

Volume 9 : Issue 3 : August 2023, pp 16 – 20 www.aetsjournal.com ISSN (Online) : 2394 - 6237

- --

19

RViz supports the visualization of diverse data types, such as

point clouds from LIDAR sensors, images from cameras,

robot poses, trajectory paths, and more. Users can configure

and customize RViz to display multiple types of data

simultaneously, enabling a comprehensive view of the robot's

environment and its interactions. RViz also provides options

for displaying reference frames, overlays, and interactive

markers, allowing users to manipulate the visualization and

gain insights into complex robotic scenarios.

Fig. 3 ROS 3D VISUALIZATION

Moreover, RViz is an essential tool for evaluating and fine-

tuning algorithms related to mapping, localization, path

planning, and obstacle avoidance. Its real-time visualization

capabilities aid in identifying potential issues, refining

parameters, and ensuring that the robot's behavior aligns with

the intended goals. Whether it's simulating robot motion,

verifying sensor data accuracy, or verifying the effectiveness

of navigation algorithms, development and testing process in

the field of robotics.

Gazebo

Gazebo is a widely used open-source simulator in the ROS

ecosystem that provides a realistic and dynamic environment

for simulating robots, sensors, and various physical

interactions. It's particularly useful during the development

phase of a robot, allowing developers to test and validate

algorithms and behaviors in a controlled virtual environment

before deploying them on a physical robot.

Gazebo's key features include physics-based simulations,

accurate modeling of sensors and actuators, and the ability to

create complex scenarios involving multiple robots and

objects. It supports simulating a wide range of robots, from

wheeled ground robots to flying drones and even humanoid

robots.

Developers can customize and extend Gazebo's capabilities

by adding plugins for specific sensors, controllers, and

behaviors.

Fig. 4 ROS OBJECT VISUALIZATION

One of the notable aspects of Gazebo is its integration with

ROS. Robots can be controlled within Gazebo using ROS

nodes, allowing for seamless interaction between the

simulated robot and other ROS components. This integration

facilitates the development, testing, and debugging of robot

control algorithms, sensor integration, and navigation

strategies.

Overall, Gazebo's capability to replicate real-world

interactions and scenarios in a virtual environment makes it a

valuable tool for prototyping and evaluating robot behaviors,

reducing development time and costs, and enhancing the

overall reliability of robotics systems before deployment.

III. INTERNET OF THINGS

A ROS robot is a type of robot that uses the Robot Operating

System (ROS) as its software framework to control and

manage its various components and functionalities. ROS is

an open-source middleware designed to facilitate the

development of robotic systems by providing a flexible and

modular platform for creating, controlling, and interacting

with robots. It offers tools, libraries, and conventions for

building and coordinating complex robot behaviors.

ROS Architecture: ROS follows a distributed architecture

based on nodes. Nodes are individual software modules that

perform specific tasks, such as sensor data processing, motor

control, mapping, navigation, and more. Nodes communicate

with each other by publishing and subscribing to topics,

which are data streams of a specific type.

International Journal on Applications in Information and Communication Engineering

Volume 9 : Issue 3 : August 2023, pp 16 – 20 www.aetsjournal.com ISSN (Online) : 2394 - 6237

- --

20

Modularity and Reusability: ROS encourages modularity and

reusability of code. Functionality is organized into packages,

and packages are composed of nodes, libraries, and

configuration files. This modular approach allows developers

to create and share software components that can be easily

integrated into various robotic systems.

Sensor Integration: ROS provides libraries and tools to

interface with a wide range of sensors, such as cameras,

LIDAR, IMUs, GPS, and more.

Mapping and Navigation: ROS offers capabilities for

Simultaneous Localization and Mapping (SLAM), enabling

robots to create maps of their environments while

simultaneously determining their own positions within those

maps. Navigation algorithms and planners are also available

to help robots navigate autonomously.

Community and Ecosystem: ROS has a strong and active

community of developers, researchers, and hobbyists. There

are numerous tutorials, documentation, and resources

available online, making it easier for newcomers to get

started and for experienced developers to solve problems.

Robot Types: ROS is used in various types of robots, from

ground robots (wheeled, tracked, legged) to aerial drones and

even robotic arms. It's applicable in research, industrial

automation, education, healthcare, agriculture, and more.

ROS Versions: ROS has different versions, each with its own

set of features and improvements. The latest version as of my

last update in September 2021 is ROS 2. ROS 2 extends the

capabilities of ROS 1 with improved real-time support, better

security, and enhanced scalability.

IV. CONCLUSION

In conclusion, this ROS robot simulation project has

demonstrated the remarkable potential of the Robot

Operating System in shaping the future of robotics. Through

meticulous design, development, and implementation, we

have successfully created a virtual environment where our

ROS-based robot exhibited complex behaviors, navigated

autonomously, and interacted seamlessly with its

surroundings. The project highlighted the versatility and

modularity of ROS, enabling us to integrate various

components, sensors, and algorithms to achieve a cohesive

and functional simulation. As we reflect on the journey

undertaken during this project, it becomes evident that ROS's

open-source nature empowers researchers, developers, and

robotics enthusiasts to collaborate, innovate, and address the

challenges of the rapidly evolving robotics landscape. Our

simulation not only showcased the technical capabilities of

ROS but also underscored the importance of robust software

architectures, efficient communication protocols, and

adaptive algorithms for building sophisticated robotic

systems.

REFERENCES

[1]. Quigley, Morgan, et al. "ROS: an open-source Robot Operating

System." ICRA workshop on open source software. Vol. 3. No.

3.2. 2009.

[2]. Cousins, Steve, et al. "Sharing software with ros [ros topics]."

IEEE Robotics & Automation Magazine 17.2 (2010): 12-14.

[3]. Martinez, Aaron, and Enrique Fernández. Learning ROS for

robotics programming. Packt Publishing Ltd, 2013.

[4]. Qidwai, Uvais. "Fun to learn: Project-based learning in robotics

for computer engineers." ACM Inroads 2.1 (2011): 42-45.

[5]. O'Kane, Jason M. "A gentle introduction to ros." (2014): 1564.

[6]. I. Ghani, Muhammad Fahmi Abdul Khairul Salleh Mohamed
Sahari, and Loo Chu Kiong. "Improvement of the 2 SLAM

system using Kinect sensor for indoor mapping." Soft Computing

and Intelligent Systems (SCIS), 2014 Joint 7th International
Conference on and Advanced Intelligent Systems (ISIS), 15th

International Symposium on. IEEE, 2014.

[7]. Schmitt, Simon, et al. "A reference system for indoor

localization testbeds." Indoor Positioning and Indoor Navigation

(IPIN), 2012 International Conference on. IEEE, 2012.

[8]. [8] Sumaray, Audie, and S. Kami Makki. "A comparison of data

serialization formats for optimal efficiency on a mobile

platform." Proceedings of the 6th international conference on

ubiquitous information management and communication. ACM,

2012.

[9]. La Delfa, Gaetano Carmelo, and Vincenzo Catania.

