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ABSTRACT 

Set theory is a branch of mathematical logic that studies sets, which informally are collections of objects. 

Mathematical logic is a subfield of mathematics exploring the applications of formal logic to 

mathematics. It bears close connections to meet mathematics, the  foundations of mathematics, and 

theoretical computer science. The unifying themes in mathematical  logic  include  the study  of the 

expressive  power  of formal systems and the deductive power of formal proof systems. Although any type 

of object can be collected into a set, set theory is applied most often to objects that are relevant to 

mathematics The language of set theory can be used in the definitions of nearly all mathematical objects. 

The study investigates various types of set theory and their applications in solving real time problems. 

The main intent of the study is to explore different types of set theory and their dynamic usage in the 

different areas of problems. So the study highlights the dynamic ways in which different set theory are 

used. To do so, an exploratory research approach has been applied. 

Keywords: Set theory, Universal Set, Null Set, Finite Set, Infinite Set, Equivalent Set, Venn diagram and 

De Morgan’s law. 

INTRODUCTION 

Set theory is a mathematical abstract concerned with the grouping of sets of numbers that have 

commonality. For example, all even numbers make up a set, and all odd numbers comprise a set. All 

numbers that end in zero make up a set of numbers that can be divided by 10. Using and comparing sets 

enables the creation of theories and  rules that have practically unlimited scope,whether in mathematics or 

applied to areas such as business. Applied to business operations, set theory can assist in planning and 

operations. Every element of business can be grouped into at least one set such as accounting, 

management, operations, production and sales. With in those sets are other 

sets.Inoperations,forexample,therearesetsofwarehouseoperations,salesoperations and administrative 
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operations. In some cases, sets intersect -- as sales operations can intersect the operations se tand the 

salesset. 

Objective of the study: 

The main objective of the study is to explore different types of set theory and their dynamic usage in the 

different areas of problems. 

Methodology of the study: 

Exploratory research approach has been used to conduct there search program successfully. 

Definition of set 1.1: 

Asetisacollectionofwelldefinedobjectsorelementshavingcertainproperties.Each object comprising a set is 

called element of the set. Usually, a set is denoted by the capital letters 

A, B, C,D,……etc and elements are denoted by the small letters a, b, c, d, ……etc and also the elements 

of the set are placed within a braces or second bracket. 

Properties of set 1.2: 

 It should be well defined 

 It is the collection of all objects 

 Elements of set must be well-distinguished and independent. 

 Elements of set must be homogeneous. 

 Elements of set must be written second bracket{}and separatedby commas(,) 

Elements of a Set 1.3: 

Theobjectsusedtoformasetarecalleditselementoritsmembers.Generally,the elements of a set are written 

inside a pair of curly (idle) braces and are represented by commas. The name of the set is always written 

in capital letter. 

Examples to find the elements or members of a set: 

1. A = {v, w, x, y, z} 

Here ‘A’ is the name of the set whose elements (members) are v, w, x, y, z. 

2. If a set A = {3, 6, 9, 10, 13, 18}. State whether the following statements are ‘true’ or ‘false’: 

 i) 7 ∈A   ii)12 ∉A   iii)13 ∈A  iv)9, 12 ∈A   v)12, 14, 15 ∈A 

Different Notations in Sets 1.4 : 
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∈ 

 Belongs to 

∉ Does not belongs 

∅ A Null set or empty set 

∪ Union of two sets 

∩ Intersection of two sets 

I or  Set of integers {………, -2, -1, 0, 1, 2, ………} 

Z  Set of all positive 

integers Set 

Z+  all rational numbers 

W Set of whole numbers = {0, 1, 2, 3, ………} 

R+  Set of all complex numbers C 

These are the different notations in  

Different Types of Set 2.1: 

Sets may be of various types. We give below a few of them... 

Finite Set 2.1.2: 

When the elements of a set can be counted by finite number of elements then the set is called a finite set. 

The following are the examples of finite sets: 

A ={} 

B = {} 

C = {} 

In all above sets the elements can be counted by a finite number. It should br denoted that a set containing 

a very large number of elements is also a finite set. Thus, the set of all human beings in Bangladesh, the 

set of all integers between -1 crore and +1 crore all finite sets. 

Infinite Set 2.1.3: 

Iftheelementsofasetcannotbecountedinafinitenumber,thesetiscalledaninfinite 

set.Thefollowingareexamplesofinfinitesets: 
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A ={ 1,2,3,4,5,…..} 

B = {x: x is an odd positive integer} 

C = { x: x is an even positive integer} 

Empty or Null Set 2.1.4: 

A Set containing only one element is called a singleton or a unit set. For example..   A = {x: x is neither 

prime nor composite} 

It is a singleton set containing one element, i.e., 1. 

 B = {x: x is a whole number, x <1} 

this set contains only one element 0 and is a singleton set. 

Equal Set 2.1.6: 

Two sets A and B are said to be equal if every element of A is also an element of B, and every element of 

B is also an element of A , 

i.e. We find that A=B=C, as each set contains the same elements namely a, c, h, m, r irrespective of their 

order. Hence the sets are equal. It may be noted that the order of elements or the repetition of elements 

does not matter in set theory. 

Let    A={2,3}, B={3,2,2,3} and C={X:X2-5X=6=0} . This A=B=C since each element which belongs to 

anyone of the sets also belongs to the other two sets. Hence the sets areequal. 

Equivalent Sets 2.1.7: 

Here A and C are equal sets while A and B are equivalent sets. Let A={a,b,c,d} and B={3,2,2,3} 

Here the elements of A can be put into one to one correspondence with those of B .Thus  

 a, b, c, d 

3, 2, 2, 3 

Hence A≡B. 

Subset 3.1: 

If A and B are two sets, and every element of set A is also an element of set B, then A is 

called a subset of B and we write it as A ⊆ B or B ⊇A 

The symbol ⊂stands for ‘is a subset of’ or ‘is contained in’ 

 Every set is a subse to fit self,i.e.,A⊂A,B⊂B. 

 Empty setisasubsetofeveryset. 
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 Symbol‘⊆’isusedtodenote‘isasubsetof’or‘iscontainedin’. 

 A ⊆B means A is a subset of B or A is contained inB. 

 B ⊆A means B containsA. 

For example; 

1. Let A = {2, 4, 6}&B = {6, 4, 8, 2} 

Here A is a subset of B 

Since, all the elements of set A are contained in set B. But B is not the subset of A 

Since, all the elements of set B are not contained in set A. 

2. The set N of natural numbers is a subset of the set Z of integers and we write N ⊂ Z. 

3. Let A = {2, 4, 6} 

B = {x : x is an even natural number less than 8} 

Here A ⊂B and B ⊂A. Hence, we can say A = B 

4. Let A = {1, 2, 3, 4} 

B = {4, 5, 6, 7} 

HereA⊄BandalsoB⊄C [⊄denotes ‘not a subsetof’] 

Super Set 3.2: 

Whenever a set A is a subset of set B, we say the B is a superset of A and we write,  

B ⊇A. 

Symbol ⊇is used to denote ‘is a super set of’ For example; A = {a, e, i, o, u} 

B = {a,b,c, ,z} 

Here A ⊆B i.e., A is a subset of B but B ⊇A i.e., B is a super set of A 

Proper Subset 3.3: 

If A and B are two sets, then A is called the proper subset of B if A ⊆B but B ⊇A i.e., A 

≠ B. The symbol ‘⊂’ is used to denote proper subset. Symbolically, we write A ⊂B. For 

example; 

1. A = {1, 2, 3, 4} 
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Here n(A)  =  4 B={1,2,3,4, 5} 

Here n(B) =5 

We observe that, all the elements of A are present in B but the element ‘5’ of B isnot present inA. 

So, we say that A is a proper subset of B. Symbolically, we write it as A ⊂B 

2. A = {p, q, r} 

B = {p, q, r, s, t} 

Here A is a proper subset of B as all the elements of set A are in set B and also A ≠ B. 

Power Set 3.4: 

The collection of all subsets of set A is called the power set of A. It is denoted by P (A). In P (A), every 

element is a set. For example; 

If A = {p, q} then all the subsets of A will be 

P (A) = {∅, {p}, {q}, {p, q}} 

Number of elements of P (A) = n [P (A)] = 4 = 22 

In general, n[P(A)] = 2m where m is the number of elements in set A. 

Universal Set 3.5 : 

A set which contains all the elements of other given sets is called a universal set. The symbol for denoting 

a universal set is ∪or ξ. For example; 

1. If A = {1,2,3} B = {2,3,4} C = {3, 5,7} 

then U = {1, 2, 3, 4, 5, 7} 

[Here A ⊆U, B ⊆U, C ⊆U and U ⊇A, U ⊇B, U ⊇C] 

2. If P is a set of all whole numbers and Q is a set of all negative numbers then the universal set is a set of 

all integers. 

3. If A = {a,b,c} B ={d,e} C = {f, g, h,i} 

then U = {a, b, c, d, e, f, g, h, i} can be taken as universal set. 

Disjoint Sets 3.6: 

TwosetsAandBaresaidtobedisjoint,iftheydonothaveanyelementincommon. Forexample; 

A = {x : x is a prime number} 

B = {x : x is a composite number}. 
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Clearly, A and B do not have any element in common and are disjoint sets. 

Family of sets3.7: 

If all the elements of a set of set themselves then such a set is called family of set. Example: If P={X,Y} 

then the set {∅{x},{b},{x,y}} is the family of sets whose elements are subsets of the setP. 

Operations on sets  4.1 : 

The method of assigning such a new set is called operations on set. There are several fundamental 

operations for constructing new sets from given sets. The operations on sets are defined to develop 

algebra of sets. Types of set operations are given below : 

Union of sets 4.1.2:The union of A and B, denoted A ∪B 

Twosetscanbe"added"together.TheunionofAandB,denotedbyA∪B,isthesetof 

allthingsthataremembersofeitherAorB. 

Examples: 

 {1, 2} ∪ {1, 2} = {1,2}. 

 {1, 2} ∪ {2, 3} = {1, 2,3}. 

 {1, 2, 3} ∪ {3, 4, 5} = {1, 2, 3, 4,5} 

Some basic properties of unions: 

 A ∪B = B ∪A. 

 A ∪ (B ∪C) = (A ∪B) ∪C. 

 A⊆(A∪B). The union of A and B, denoted A ∪B 

 A ∪A =A 

 .A ∪∅=A. 

 A⊆BifandonlyifA∪B= B. 

Intersections 4.1.3: 

A new set can also be constructed by determining which members two sets have "in common".The 

intersection of A and B, denoted by A∩B, is the set of all things that are members 

ofbothAandB.IfA∩B=∅,thenAandBaresaidtobedisjoint. 

Examples: 

 {1, 2} ∩ {1, 2} = {1,2}. 

 {1, 2} ∩ {2, 3} ={2}. 



110 

Set Theory and its Application in Mathematics  

Copyright © 2023, AETS Global. Pages 103-119, November 2023 
 ISBN: 978-93-5980-742-3, www.aetsjournal.com ― Handbook of research in Basic and Applied Science 

Some basic properties of intersections: 

 A ∩ B = B ∩A. 

 A ∩ (B ∩ C) = (A ∩ B) ∩C. 

 A ∩ B ⊆A. 

 A ∩ A =A. 

 A∩∅=∅. The intersection of A and B, denoted A ∩B 

 A ⊆B if and only if A ∩ B =A. 

Complements 4.1.4: 

Two sets can also be"subtracted".Therelative complement ofBinA(alsocalledtheset- 

theoreticdifferenceofAandB),denotedbyA\B(orA−B),isthesetofallelementsthat are members of A but not 

members of B. Note that it is valid to "subtract" members of a set that are not in the set, such  as  

removing  the  element green from  the  set {1,  2, 3}; doing so has noeffect. 

In  certain  settings  all  sets  under  discussion  are  considered  to  be  subsets  of  a  given universal set 

U. In such cases, U \ A is called the absolute complement or simply complements of A, and is denoted 

byAc. 

Examples: 

 {1, 2} \ {1, 2} =∅. 

 {1, 2, 3, 4} \ {1, 3} = {2,4}. 

 If U is the set of integers, E is the set of even integers, and O is the set of odd integers, then U \ E 

= Ec=O. 

Some basic properties of complements: 

 A\B≠B\AforA≠B. 

 A ∪ Ac =U. 

  

 A ∩ Ac =∅. 

 (Ac )c=A. 

 A \ A =∅. 

 Uc= ∅and ∅ =Uc. 
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The relative complement of B in A  

Relative complement of A in B 

B -Aor AC∩B 

Anextensionofthecomplementisthesymmetricdifference,defined for sets A, Bas 

For example, the symmetric difference of  

{7, 8, 9, 10} and {9, 10, 11, 12} is the set {7, 8, 11, 12}. 

Difference of two sets 4.1.5: 

If A and B are any two sets then the difference of A and B is the set of 

difference which belongs to A but does not belongs to B. The difference of A and B is denoted by A or A 

.Symbolically we can write A = {x:x∈Aand x ∉B}. 

Cartesian product 5.1 : 

A new set can be constructed by associating every element of one set with every element of another set. 

The Cartesian product of two sets A and B, denoted by A × B is the set of all ordered pairs (a, b) such that 

a is a member of A and b is a member of B. 

Examples: 

 {1, 2} × {red, white} = {(1, red), (1, white), (2, red), (2,white)}. 

 {1, 2} × {red, white, green} = {(1, red), (1, white), (1, green), (2, red), (2,white), 

(2, green)}. 

 {1, 2} × {1, 2} = {(1, 1), (1, 2), (2, 1), (2,2)}. 

 {a, b, c} × {d, e, f} = {(a, d), (a, e), (a, f), (b, d), (b, e), (b, f), (c, d), (c, e), (c,f)}. 

Some basic properties of Cartesian products: 

 A ×∅=∅. 

 A×(B∪C)=(A×B)∪(A×C). 

 (A ∪B) × C = (A × C) ∪ (B ×C). 

Let A and B be finite sets; then the cardinality of the Cartesian product is the product of the cardinalities: 

 | A × B | = | B × A | = | A | × | B|. 
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VENN DIAGRAM 6.1 : 

A Venn diagram is a diagram that shows all possible logical relations between finite collections of 

different sets. These diagrams  depict elements as  points  in the plane, and sets as regions inside closed 

curves. A Venn diagram consists of multiple overlapping closed curves, usually circles, each representing 

a set. The points inside a curve labeled S represent elements of the set S, while points outside the 

boundary represent elements not in the set S. Thus, for example, the set of all elements that are members 

of both sets S and T, S∩T, is represented visually by the area of overlap of the regions S and T. In Venn 

diagrams the curves are overlapped in every possible way, showing all possible relations between the sets. 

They are thus a special case of Euler diagrams, which do not necessarily show all relations. Venn  

diagrams  were  conceived  around  1880  by John Venn. They are used to teach elementary set theory, as 

well as illustrate simple set relationships in probability, logic, statistics, linguistics and computerscience. 

 A Venn diagram in which in addition the area of each shape is proportional to the number of 

elements it contains is called an area-proportional or scaled Venndiagram. 

             Intersection of two sets                                      union of two sets   

Relative complement of A in B 

A 𝐵or A 𝐵𝑐 

De Morgan’s law 6.1.2: 

a)DeMorgan’slawsoncomplementofsets 

The complement of the union of two sets is equal to the intersection of their complements and the 

complement of the intersection of two sets is equal to the union of their complements. These are called De 

Morgan’s laws. 

 For any two finite sets A andB; 

 (AUB)C=AC ∩ BC (which is a De Morgan's law ofunion). 

 (A∩B)C= AC U BC ' (which is a De Morgan's law ofintersection). 

 (i) Proof that:(AUB)C=AC ∩ BC 

Let ,x ∈(AUB)C, here x be an arbitrary element of (AUB)C 

⇒x ∉(A U B) 

⇒x ∉A and x ∉B 

⇒x ∈ACand x ∈BC 

 ⇒x ∈AC ∩ BC 

Therefore,    (Ac∪B)C⊆ Ac∩ Bc …………………………..(1) 

Again, let y ∈Ac∩ Bc, here y be an arbitrary element of Ac∩ Bc 
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⇒ y ∈ Ac and y ∈Bc 

⇒y ∉A and y ∉B 

⇒y ∉(A U B) 

⇒y ∈(AUB)C 

Therefore, Ac∩ Bc⊆(AUB)C (2) 

 Now combine (1) and (2) we get(AUB)C=AC ∩ BC   Proved. 

(ii) Proof that :(A∩B)C=AC UBC 

Let x ∈(A∩B)C, here x be an arbitrary element of(A∩B)C 

⇒x ∉(A ∩ B) 

⇒x ∉A or x ∉B 

⇒x ∈ACor x ∈BC 

⇒x ∈ACU BC 

Therefore,  (A∩B)C⊆AC UBC (1) 

Again, let y ∈U here y be an arbitrary element of ∪ 

⇒y ∈ ACor y ∈BC 

⇒y ∉A or y ∉B 

⇒y ∉(A ∩ B) 

⇒y ∈(A∩B)C 

Therefore, AC UBC⊆(A∩B)C (2) 

Now combine (1) and (2) weget (A∩B)C=AC UBCProved 

b)DeMorgan’slawsondifferenceofsets 

Statement: Let A, B and C be any two sets then 

(i) A – (B∪C)= (A – B) ∩(A-C) 

(ii) A – (B∩C)= (A – B) ∪(A-C) 

 DeMorgan’sfirstlawsondifferenceofsets 

Statement: Difference of a union is the intersection of difference i.e. 
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A – ( B∪C) = (A – B)∩ (A- C) 

Proof: Let x ∈A – ( B∪C ) , here x be an arbitrary element of A – ( B∪C ). 

⇒x ∈Aand x ∉( B∪C ) 

⇒x ∈Aand (x ∉Band x ∉C) 

⇒(x ∈Aand x ∉B)and (x ∈Aand x ∉C) 

⇒x ∈(A-B)and x ∈(A-C) 

⇒x ∈(A-B) ∩ (A-C)  

Therefore A – ( B∪C )⊆(A – B) ∩ (A-C) (1) 

Againlety∈(A–B)∩(A-C)hereybeanarbitraryelementof(A–B)∩(A-C) 

⇒y ∈(A – B) and y ∈(A- C) 

⇒(y ∈Aand y ∉B )and  (y ∈A and y ∉C) 

⇒y ∈Aand ( y ∉B∉C) 

⇒y ∈Aand y ∉(B∪c) 

⇒y ∈A–(B∪C) 

Therefore (A – B)   ∩  (A- C) ⊆A – ( B∪ C ) (2) 

Now combine (i) and (ii) we get, 

A – ( B ∪ C) = (A – B) ∩ (A -C) Proved 

 DeMorgan’sfirstlawsondifferenceofsets 

Statement: Difference of a intersection is the union of difference i.e. 

A – ( B∩C) = (A – B) ∪(A- C) 

Proof : Let x ∈A – ( B∩C) , here x be an arbitrary element ofA – ( B∩C) 

⇒x ∈A and x ∉( B∩C) 

⇒x ∈A and (x ∉B  or x ∉C ) 

⇒(x ∈A  and x ∉B) or (x ∈ A and x ∉ C ) 

⇒x ∈(A – B) or x ∈(A- C) 

⇒x ∈(A – B) ∪(A- C)  
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Therefore A – ( B∩C) ⊆(A – B) ∪(A- C) (i) 

Againlety∈(A–B)∪(A-C)hereybeanarbitraryelementof(A–B)∪(A-C) 

⇒y∈(A–B)ory∈(A-C) 

⇒(y ∈ A and y ∉ B) or (y ∈ A and y ∉ 

⇒y ∈ A and ( y ∉ B  or y ∉ C ) 

⇒y ∈A  and y ∉( B∩C)  

⇒y ∈– A - ( B∩C)  

Therefore (A – B) ∪(A- C) ⊆A –(        ) (ii) 

Now combine (i) and (ii) we get, 

A – ( B∩C) = (A – B) ∪(A- C) Proved 

SOMEPROVEONSETOPERATIONS 6.1.3 : 

Prove-1: Let A, B, and C be any three sets, prove that A∪(B C) = ( A∪B)∩(A∪C) 

Proof: Let x ∈A ∪(B ∩ C), here xbe an arbitrary element of A ∪(B ∩ C) 

⇒x ∈A or x ∈(B ∩ C) 

⇒x ∈A or {x ∈B and x ∈C} 

⇒{x ∈A or x ∈B} and {x ∈A or x ∈C} 

⇒x ∈(A ∪B) ∩ (A ∪C) 

Therefore, A ∪(B ∩ C) ⊆(A ∪B) ∩ (A∪C) (1) 

Again 

Let y ∈(A ∪B) ∩ (A ∪C), here y be an arbitrary element of (A ∪B) ∩ (A ∪C). 

⇒y ∈(A or B) and y ∈(A or C) 

⇒{y ∈A or y ∈B} and {y ∈A or y ∈C} 

⇒y∈Aor{y∈Bandy∈C} 

⇒y ∈A ∪ {y ∈(B ∩ C)} 

⇒y ∈A ∪ (B ∩ C) 

Therefore,(A ∪B) ∩ (A ∪C) ⊆A ∪(B∩C)…………………. (2) 
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Now combine (1) and (2) we get, 

A ∪ (B ∩ C) = (A ∪ B) ∩ (A∪ C) Proved 

Prove-2:  

Let A, B, and C be any three sets, prove that A (B∪C)=(A∩B)∪ (A∩C) Proof: let x ∈A ∩ (B ∪C), here x 

be an arbitrary element of A ∩ (B ∪C) 

⇒x ∈A and x ∈(B ∪C) 

⇒x ∈A and {x ∈B or x ∈C} 

⇒{x ∈A and x ∈B} or {x ∈A and x ∈C} 

⇒x ∈(A ∩B) or x ∈(A ∩ C) 

⇒x ∈(A∩ B) ∪(A ∩ C) 

Therefore, A∩(B∪C) ⊆(A∩B) ∪(A∩C) (1) 

Again 

Let y ∈(A∩ B) ∪(A∩ C), here y be an arbitrary element of (A∩ B) ∪(A∩ C) 

⇒y ∈(A∩ B) or y ∈(A ∩C) 

⇒{y ∈ A and y ∈ B} or {y ∈ A and y ∈ C} 

⇒y ∈A and {y ∈B or y ∈C} 

⇒y ∈A and {y ∈(B ∪C)} 

⇒y ∈A∩ (B ∪C) 

Therefore  ( A∩B) ∪(A∩C) ⊆A∩ (B∪C) (2) 

Now combine (1) and (2) we get, 

A∩(B∪C) =  ( A∩B) ∪(A∩C) Proved 

 

Prove-3: If A and B are two sets, then prove that 

 A-B⊆A (ii) A ∩ (B -A)=∅ 

Proof: (i) let x ∈A B, here x be an arbitrary element of A B 

⇒x ∈A and x ∉ B 

⇒x ∈A or x ∉B 
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⇒x ∈A [x is an element of set A , not set B] 

⇒A - B⊆A Proved 

Proof: (ii) let x ∈A ∩ (B- A), here x be an arbitrary element of A ∩ (B -A) 

⇒x∈ A and x∈(B-A) 

⇒x∈A and (x ∈B and x ∉A) 

⇒(x∈Aandx∉A)andx∈B 

⇒φ and x∈B  

⇒φ 

Therefore A ∩ (B -A) ⊆φ (1) 

Sinceis a subset of every set Therefore φ⊆A ∩(B A) .…(2) 

Now combine (1) and (2) we get, 

A ∩ (B -A)=∅ Proved 

CONCLUSION: 

The theory of sets has been the base for the foundation of mathematics and so is considered as one of the 

most significant branches in mathematics. The fact that any mathematical concept can be interpreted with 

the help of set theory has not only increased its versatility but has established this theory to be the 

universal language of mathematics. In the recent past, a relook to the concept of uncertainty in science 

and mathematics has brought in paradigmatic changes. Set theory provides the basis of topology, the 

study of sets together with the properties of various collections of subsets. 
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