
 International Journal on Applications in Information and Communication Engineering

Volume 4: Issue 2: May 2018, pp 41 - 54. www.aetsjournal.com ISSN (Online) : 2394 - 6237

--

41



Abstract— With the popularity of cloud computing, mobile

devices can store/retrieve personal data from anywhere at any time.

Consequently, the data security problem in mobile cloud becomes

more and more severe and prevents further development of mobile

cloud. There are substantial studies that have been conducted to

improve the cloud security. However, most of them are not applicable

for mobile cloud since mobile devices only have limited computing

resources and power. Solutions with low computational overhead are

in great need for mobile cloud applications. In this paper, we propose

a lightweight data sharing scheme (LDSS) for mobile cloud

computing. It adopts CP-ABE, an access control technology used in

normal cloud environment, but changes the structure of access

control tree to make it suitable for mobile cloud environments. LDSS

moves a large portion of the computational intensive access control

tree transformation in CP-ABE from mobile devices to external

proxy servers. Furthermore, to reduce the user revocation cost, it

introduces attribute description fields to implement lazy-revocation,

which is a thorny issue in program based CP-ABE systems. The

experimental results show that LDSS can effectively reduce the

overhead on the mobile device side when users are sharing data in

mobile cloud environments.

Keywords— mobile cloud computing, data encryption, access

control, user revocation .

I. INTRODUCTION

ith the development of cloud computing and the

popularity of smart mobile devices, people are

gradually getting accustomed to a new era of data sharing

model in which the data is stored on the cloud and the mobile

devices are used to store/retrieve the data from the cloud.

Typically, mobile devices only have limited storage space and

computing power. On the contrary, the cloud has enormous

amount of resources. In such a scenario, to achieve the

satisfactory performance, it is essential to use the resources

A.Thamizhezhilan, Final Year CSE, Meenakshi Ramaswamy

Engineering College, Thathanur, Tamilnadu, India .

K.Nandhini, Final Year CSE, Meenakshi Ramaswamy

Engineering College, Thathanur, Tamilnadu, India .

K.Ashwini, Final Year CSE, Meenakshi Ramaswamy Engineering

College, Thathanur, Tamilnadu, India .

S.Sathish, Final Year CSE, Meenakshi Ramaswamy Engineering

College, Thathanur, Tamilnadu, India .

Dhivya.D Final Year CSE, Meenakshi Ramaswamy Engineering

College, Thathanur, Tamilnadu, India .

M.Makuru , HOD/CSE, Meenakshi Ramaswamy Engineering

College, Thathanur, Tamilnadu, India .

provided by the cloudservice provider (CSP) to store and share

the data.

Nowadays, various cloud mobile applications have been

widely used. In these applications, people (data owners) can

upload their photos, videos, documents and other files to the

cloud and share these data with other people (data users) they

like to share. CSPs also provide data management

functionality for data owners. Since personal data files are

sensitive, data owners are allowed to choose whether to make

their data files public or can only be shared with specific data

users. Clearly, data privacy of the personal sensitive data is a

big concern for many data owners.

The state-of-the-art privilege management/access control

mechanisms provided by the CSP are either not sufficient or

not very convenient. They cannot meet all the requirements of

data owners. First, when people upload their data files onto the

cloud, they are leaving the data in a place where is out of their

control, and the CSP may spy on user data for its commercial

interests and/or other reasons. Second, people have to send

password to each data user if they only want to share the

encrypted data with certain users, which is very cumbersome.

To simplify the privilege management, the data owner can

divide data users into different groups and send password to

the groups which they want to share the data. However, this

approach requires fine-grained access control. In both cases,

password management is a big issue.

Apparently, to solve the above problems, personal sensitive

data should be encrypted before uploaded onto the cloud so

that the data is secure against the CSP. However, the data

encryption brings new problems. How to provide efficient

access control mechanism on ciphertext decryption so that

only the authorized users can access the plaintext data is

challenging. In addition, system must offer data owners

effective user privilege management capability, so they can

grant/revoke data access privileges easily on the data users.

There have been substantial researches on the issue of data

access control over ciphertext. In these researches, they have

the following common assumptions. First, the CSP is

considered honest and curious. Second, all the sensitive data

are encrypted before uploaded to the Cloud. Third, user

authorization on certain data is achieved through

encryption/decryption key distribution. In general, we can

divide these approaches into four categories: simple ciphertext

access control, hierarchical access control, access control

based on fully homomorphic encryption [1][2] and access

control based on attribute-based encryption (ABE). All these

proposals are designed for non-mobile cloud environment.

 A.THAMIZHEZHILAN , K.NANDHINI , K.ASHWINI , S.SATHISH ,

DHIVYA.D , M.MAKURU

 ,

AN EFFICIENT SECURE DATA SHARING FOR

MOBILE COMPUTING

W

 International Journal on Applications in Information and Communication Engineering

Volume 4: Issue 2: May 2018, pp 41 - 54. www.aetsjournal.com ISSN (Online) : 2394 - 6237

--

42

They consume large amount of storage and computation

resources, which are not available for mobile devices.

According to the experimental results in [26], the basic ABE

operations take much longer time on mobile devices than

laptop or desktop computers. It is at least 27 times longer to

execute on a smart phone than a personal computer (PC). This

means that an encryption operation which takes one minute on

a PC will take about half an hour to finish on a mobile device.

Furthermore, current solutions don‘t solve the user privilege

change problem very well. Such an operation could result in

very high revocation cost. This is no proper solution which

can effectively solve the secure data sharing problem in

mobile cloud. As the mobile cloud becomes more and more

popular, providing an efficient secure data sharing mechanism

in mobile cloud is in urgent need.

To address this issue, in this paper, we propose a

Lightweight Data Sharing Scheme (LDSS) for mobile cloud

computing environment.

The main contributions of LDSS are as follows:

(1) We design an algorithm called LDSS-CP-ABE based on

Attribute-Based Encryption (ABE) method to offer

efficient access control over ciphertext.

(2) We use proxy servers for encryption and decryption

operations. In our approach, computational intensive

operations in ABE are conducted on proxy servers, which

greatly reduce the computational overhead on client side

mobile devices. Meanwhile, in LDSS-CP-ABE, in order

to maintain data privacy, a version attribute is also added

to the access structure. The decryption key format is

modified so that it can be sent to the proxy servers in a

secure way.

(3) We introduce lazy re-encryption and description field of

attributes to reduce the revocation overhead when dealing

with the user revocation problem.

(4) Finally, we implement a data sharing prototype

framework based on LDSS. The experiments show that

LDSS can greatly reduce the overhead on the client side,

which only introduces a minimal additional cost on the

server side. Such an approach is beneficial to implement a

realistic data sharing security scheme on mobile devices.

The results also show that LDSS has better performance

compared to the existing ABE based access control

schemes over ciphertext.

The rest of this paper is organized as follows. Section 2

presents some fundamental concepts in secure mobile cloud

data sharing and the security premise. Section 3 gives the

detailed design of LDSS. Section 4 and 5 give the safety

assessment and performance evaluation, respectively. Section

6 presents related works. Finally, Section 7 concludes our

work with the future work.

II. PRELIMINARIES AND ASSUMPTIONS

In this section, we first briefly present the technique

preliminaries closely related to LDSS, and then present the

system model and some security assumptions in LDSS.

A. Preliminary Techniques

1) Bilinear Pairing

Define a function e as follows:

e : G0  G0  G1

In this function, both G0 and G1cyclic groups of the prime

order p.

Assume that g is a generator of G0 , Zp is a finite field.Then

e is a bilinear pairing if e has the following Properties .

1) Bilinear:

2) Non-degeneracy: e(g, g) is a member of G1 if g is a

member of G0 .

3) Computability:0 , e(u, v) can be calculated.

In our implementation, we usually take G0 as a group

consisting points on an elliptic curve, G1 as a multiplicative

subgroup of a finite field, e as a Weil or the Tate pairing based

on an elliptic curve over a finite field. Further descriptions on

how these parameters are defined and generated can be found

in [28].

2) Attribute-Based Encryption

Attribute-based encryption (ABE) is proposed by Sahai and

Waters [29]. It is derived from the Identity-Based Encryption

(IBE) and is particularly suitable for one-to- many data

sharing scenarios in a distributed and open cloud environment.

Attribute-based encryption is divided into two categories: one

is the Ciphertext-Policy Attribute Based Encryption (CP-

ABE), in which the access control policy is embedded into

ciphertext; the other one is Key- Policy Attribute Based

Encryption (KP-ABE), in which the access control policy is

embedded in the user's key attributes. In real applications, CP-

ABE is more suitable since it resembles role-based access

control. In CP-ABE, the data owner designs the access control

policy and assigns attributes to data users. A user can decrypt

the data properly if the user‘s attributes satisfy the access

control policy.

3) Secret Sharing Scheme

Shamir secret sharing scheme [30] is used to protect

secret information. It can be explained as below.

Assume that p is a prime number, the secret information to

share is k  K  Z p . Divide k into n pieces through the

following steps:

(1) Randomly select one (t-1)-order polynomial

 h(x)  at1 x
t1

  ... a1 x  a0  Z p [x] , and let a0 

k .

(2) Select n non-zero and distinct elements Xi from Zp,

calculate yi  h(xi),1  i  n .

(3) Distribute yi (1  i  n) as shares and publish the

corresponding x1 , x2 ,...,xn .

The process to reconstruct h(x) out of t random shares

 International Journal on Applications in Information and Communication Engineering

Volume 4: Issue 2: May 2018, pp 41 - 54. www.aetsjournal.com ISSN (Online) : 2394 - 6237

--

43

through the Lagrange polynomial interpolation is as

follows:

All these operations are done on Zp, namely, they are all p-

mode operations.

After obtaining h(x), we can get the secret k  a0  h(0) :

Since x1 , x2 ,...,xn is public, we can get Lagrange

coefficients in advance:

Thus, the formula to recover the secret k can be put in a

simpler way:

B. Security Assumptions

1) Semi-trusted Server

LDSS is designed under the same assumptions proposed in

0 that the CSP is honest but curious, which means that the

CSP will faithfully execute the operations requested by users,

but it will peek on what users have stored in the cloud. The

CSP will faithfully store users‘ data, undertake an initial

access control, update data according to users‘ requests.

However, CSP may do malicious actions such as collusion

with users to get the data in plain text.

In LDSS, proxy encryption server and proxy decryption

server are introduced to assist users to encrypt and decrypt

data so that user-side overhead can be minimized. In essence,

proxy servers are also machines in the cloud. Thus, we

consider that they are honest but curious just as the CSP.

2) Trusted Authority

In this paper, to make LDSS feasible in practice, a trusted

authority (TA) is introduced. It is responsible of generating

public and private keys, and distributing attribute keys to

users. With this mechanism, users can share and access data

without being aware of the encryption and decryption

operations.

We assume TA is entirely credible, and a trusted channel

exists between the TA and every user. The fact that a trusted

channel exists doesn‘t mean that the data can be shared

through the trusted channel, for the data can be in a large

amount. TA is only used to transfer keys (in a small amount)

securely between users. In addition, it‘s requested that TA is

online all the time because data users may access data at any

time and need TA to update attribute keys.

3) Lazy Re-encryption

In ciphertext access control, data needs to be re-encrypted

when some users‘ access privileges to the data are revoked.

However, frequent re-encryption brings heavy computational

overhead, and the accessed plaintext data may already be

stored on these data users. Therefore, this paper adopts the

lazy re-encryption method proposed in [3]. With lazy re-

encryption, when a user‘s access privilege is revoked, data is

not re-encrypted until the data owner updates the data.

In our approach, when the data owner revokes a user's

privilege, the file of the access control policy that contains

these attributes will be marked. Later, when the data owner

updates this file, it first checks the mark to see if it has been

marked as revoked. If that is the case, this file will be re-

encrypted.

III. OUR PROPOSED MECHANISM

In this section, we describe the LDSS system design. First,

we give the overview of LDSS, and then we present LDSS-

CP-ABE algorithm and system operations, which are the base

of LDSS algorithm. Finally, we describe LDSS in details.

1) Overview

We propose LDSS, a framework of lightweight data-

sharing scheme in mobile cloud (see Fig. 1). It has the

following six components.

(1) Data Owner (DO): DO uploads data to the mobile cloud

and share it with friends. DO determines the access

control policies.

(2) Data User (DU): DU retrieves data from the mobile cloud.

(3) Trust Authority (TA): TA is responsible for generating

and distributing attribute keys.

(4) Encryption Service Provider (ESP): ESP provides data

encryption operations for DO.

(5) Decryption Service Provider (DSP): DSP provides data

decryption operations for DU.

(6) Cloud Service Provider (CSP): CSP stores the data for

DO. It faithfully executes the operations requested by DO,

while it may peek over data that DO has stored in the

cloud.

As shown in Fig. 1, a DO sends data to the cloud. Since the

cloud is not credible, data has to be encrypted before it is

uploaded. The DO defines access control policy in the form of

access control tree (refer to Definition 2 in Section 3.2) on

data files to assign which attributes a DU should obtain if he

wants to access a certain data file. In LDSS, data files are all

encrypted with the symmetric encryption mechanism, and the

symmetric key for data encryption is also encrypted using

attribute based encryption (ABE). The access control policy is

embedded in the ciphertext of the symmetric key. Only a DU

who obtains attribute keys that satisfy the access control

policy can decrypt the ciphertext and retrieve the symmetric

key. As the encryption and decryption are both

 International Journal on Applications in Information and Communication Engineering

Volume 4: Issue 2: May 2018, pp 41 - 54. www.aetsjournal.com ISSN (Online) : 2394 - 6237

--

44

computationally intensive, they introduce heavy burden for

mobile users. To relieve the overhead on the client side mobile

devices, encryption service provider (ESP) and decryption

service provider (DSP) are used. Both the encryption service

provider and the decryption service provider are also semi-

trusted. We modify the traditional CP-ABE algorithm and

design an LDSS-CP-ABE algorithm to ensure the data privacy

when outsourcing computational tasks to ESP and DSP.

Figure 1. A lightweight data-sharing scheme (LDSS) framework.

2) LDSS-CP-ABE Algorithm

To better illustrate LDSS-CP-ABE algorithm, we first

define the following terms.

Definition 1: Attribute

An attribute defines the access privilege for a certain data

file. Attributes are assigned to data users by data owners. A

data user can have multiple attributes corresponding to

multiple data files. A data owner can define a set of attributes

for its data files. The data accesses are managed by access

control policy specified by data owners.

Let A = {A1, A2, A3, ..., An} be the set of attributes for a

data owner. Each data user u also has a set of attributes Au,

which is a non-empty subset of A, namely Au  {A1, A2,

A3, ..., An}.

For example, assume A is {relatives, colleagues,

classmates, friends, teachers, peers, Hubei, Beijing, Shanghai,

degree of intimacy}. A data user‘s subset Au could be {friend,

Hubei, degree of intimacy=3}. The access control policy for a

data file M could be: ((friends and degree of intimacy > 1 and

Hubei) or (relatives and peers)), which means a data user

cannot access M unless these conditions are met.

Definition 2: Access Control Tree

Access control tree is the specific expression of access

control policies, in which the leaf nodes are attributes, and

non-leaf nodes are relational operators such as and, or, n of m

threshold. Each node in an access control tree represents a

secret, and the secret of a top node can be split into multiple

secrets by secret sharing scheme and distribute to lower level

nodes. Correspondingly, if we know the secrets of leaf nodes,

we can deduce the secret of non-leaf nodes by calculating

recursively from bottom to top.

Fig. 2 shows the access control tree for the example

described in Definition 1.

Definition 3: Version Attribute.

Figure 2. The access control tree.

Version attribute is introduced in LDSS-CP-ABE algorithm

to ensure security. It is an addition to the original access

control tree, forming a new root node of and. We have the

following definitions.

T: The new access tree with version attributes.

S: The secret related to the root of T.

Ta, Ra, Sa: Ta is the initial access control tree and the left

subtree of T. Ra is the root of Ta. Sa is the secret related to Ra.

Tv, Rv, Sv: Tv is the right subtree of T and contains only

one node, which represents the version attribute Rv. Sv is the

secret related to Rv.

Both Sa and Sv are derived from S based on the secret

sharing scheme.

For the example described in Definition 1, the access control

tree with version attributes is shown in Figure 3.

Figure 3. The access control tree with version attributes.

LDSS-CP-ABE algorithm is designed using above

definitions. It includes four sub-functions:

Setup(A, V): Generate the master key MK, the public key

PK based on attribute set A of the Data Owner and the version

attribute V .

KeyGen(Au, MK): Generate attribute keys SKu for a data

user U based on his attribute set Au and the master key MK.

 International Journal on Applications in Information and Communication Engineering

Volume 4: Issue 2: May 2018, pp 41 - 54. www.aetsjournal.com ISSN (Online) : 2394 - 6237

--

45

Encryption(K, PK, T): Generate the ciphertext CT based on

the symmetric key K, public key PK and access control tree T .

Decryption(CT,T,SKu): Decrypt the ciphertext CT using

the access control tree T and the attribute keys SKu .

We explain all of these functions specifically below.

First, function Setup() is called by the trusted third party

(TA) to generate the master key and the public key. The

master key is used to generate attribute keys and the public

key is used to encrypt data files. The process of this function is

given in Function 1.

Second, function KeyGen() is used to generate attribute

keys for users, as shown in Function 2.

Third, function Encryption() is used to encrypt the symmetric

key. DO executes function Encryption() and gets Sa in step 2,

then sends it to ESP with Ta. ESP takes Ta and Sa as input and

deduces si for each leaf node, calculating CTa  {g
Si , g

r
  Xi

Si

}
num

 . Then DO gets CTa from ESP and has the final ciphertext

CT. The function Encryption() is shown in Function 3.

Fourth, DU uses Decryption() to decrypt the symmetric key

K. DU first executes step 1 to get SKu‘ and sends it to DSP

with CT. DSP executes step 2 to step 3 to get DecryptLeaf(),

which will be sent to DU. Then DU executes the last step to

get the plaintext of K. The function Decryption() is shown in

Function 4.

 In Function 4, the specific processes of step 2 and step 3

are as follows.

Let SKa-1= gri, SKa-2= gr  Xiri, (i starts from 1 to num

and num is the number of the leaf nodes of the access control

tree; let CTa-1= gSi, CTa-2=XiSi; for every leaf node z of Ta,

define the following functions:

 International Journal on Applications in Information and Communication Engineering

Volume 4: Issue 2: May 2018, pp 41 - 54. www.aetsjournal.com ISSN (Online) : 2394 - 6237

--

46

Figure 4. The attribute description field of data owner.

Similarly, for the nodes in the right subtree, let SKv- 1=grv,

SKv-2=gr
 Xv

rv, CTv-1= gSv, CTv-2=Xv
Sv, then

The specific process of step 4 is as follows.

For a non-leaf node x, assume that z is a child of x, then

Fz = DecryptLeaf(CTa, SKu‘, z)= e(g, g)q
z
(0).

Let Sx be the set of x‘s children, and the size of Sx is kx，
i  index(x), S '  {index(z) : z  S }
x x , according to secret

sharing scheme(refer to section 2.1.3), we can get:

3) Attribute Description Field in LDSS-CP-ABE

Attribute description field is introduced in LDSS for

dynamic user privilege management. It keeps access control

strategy secret against the cloud.

To better illustrate the attribute description field, we have

the following definitions.

Definition 4: Attribute Description Field. Attribute

description field is a string of binary bits, which describes

attribute information related to DO, DU and data files.

Definition 5: Attribute Description Bit. Attribute

description bit is every bit in Attribute description field

corresponding to an attribute.

Clearly, attribute description field is composed of several

attribute description bits. The size of attribute description field

equals to the number of elements in the attribute set A. Each

DO defines its own set of attributes. Attribute description

fields of different DOs are used to

Figure 5. A sample attribute description field of data user.

Figure 6. The attribute description field of data files.

There are three kinds of Attribute Description fields,

namely, the Attribute Description field of DO, the attribute

description field of DU and the attribute description field of

data file.

The attribute description field of DO is generated by the

TA. When a data owner registered with TA, it sends its own

attribute set to TA. TA then generates attribute description

field, in which each attribute bit represents a value in G0. TA

keeps the attribute description field in the DO-PK/MK-

information table. The attribute description field of DO is

shown in Fig. 4.

The attribute description field of a data user (DU) is

generated by TA and the cloud under the supervision of the

data owner. TA and the cloud keep it in contacts- information

table. TA and the cloud keep up-to-date information of DU‘s

attribute description fields according to the data owner.

Each data user also maintains an attribute description field

which may contains out-dated control information. Data users

obtain their attribute description fields from TA when TA

generates attribute keys for them. The attribute description

field is sent together with the attribute keys. In the attribute

description field of DU, every bit is either 1 or 0. A 1 denotes

that the DU owns the attribute while a 0 denotes the opposite.

For example, if the data owner has 5 attributes, a sample

attribute description field is shown in Fig. 5.

 International Journal on Applications in Information and Communication Engineering

Volume 4: Issue 2: May 2018, pp 41 - 54. www.aetsjournal.com ISSN (Online) : 2394 - 6237

--

47

The attribute description field of data files is stored on DO.

It represents which attributes are assigned in data files‘ access

control policy. If an attribute is included in the access control

policy, the corresponding bit in the description field is 1,

otherwise it‘s 0. ‗#‘ may appear in the attribute description

field when an attribute is included in the access control policy

and some data users have this attribute revoked. For a data

owner who has five attributes, an example of the attribute

description field of data files is shown in Fig. 6. control

accesses on their own data files, thus they might have different

meanings.

Assume the data owner‘s attribute set is {A, B, C, D, E},

and it has a file of which the access control policy is ―A

and C and D and E‖. A contact of the data owner has three

attributes: {A, C, D} and C is revoked. Then the description

field of this data file is shown in Fig. 6.

To enforce access control, the access control policy should

be uploaded to the cloud. It is also described by multiple

attribute description bits, which is a combination of 1 and 0.

Thus, it can protect the access control policy against the cloud.

4) System Operations of LDSS

LDSS scheme is designed for data sharing in mobile cloud.

The whole process of LDSS includes system initialization, file

sharing, user authorization, and file access operations. It also

has to support attribute revocation and file update operations.

1) System Initialization

In system initialization, Function 1 is executed. The specific

process is described as follows.

(1) When the data owner (DO) registers on TA, TA runs the

algorithm Setup() to generate a public key PK and a

master key MK. PK is sent to DO while MK is kept on

TA itself.

(2) DO defines its own attribute set and assigns attributes to

its contacts. All these information will be sent to TA and

the cloud.

(3) TA and the cloud receive the information and store it.

2) File Sharing

The process of file sharing uses Function 3 to encrypt data

files. The specific process is described as follows.

(1) DO selects a file M which is to be uploaded and encrypts

it using a symmetric cryptographic mechanism (such as

AES, 3DES algorithm) with a symmetric key K,

generating ciphertext C.

(2) DO assigns access control policy for M and encrypts K

with the assistance of ESP using Function 3, generating

the ciphertext of K (CT).

(3) DO uploads C, CT and access control policy to the cloud.

3) User Authorization

The process of user authorization executes Function 2 to

generate attribute keys for data users. The specific process is

described as follows.

(1) DU logins onto the system and sends, an authorization

request to TA. The authorization request includes attribute

keys (SK) which DU already has.

(2) TA accepts the authorization request and checks whether

DU has logged on before. If the user hasn‘t logged on

before, go to step (3) , otherwise go to step (4).

(3) TA calls Function 2 to generate attribute keys (SK) for

DU.

(4) TA compares the attribute description field in the attribute

key with the attribute description field stored in database.

If they are not match, go to step (5), otherwise go to step

(6).

For each inconsistent bit in description field, if it is 1 on data

user‘s side and 0 on TA‘s side, it indicates that DU‘s attribute

has been revoked, then TA does nothing on this bit. If it is

reversed scenario, it indicates that DU has been assigned with

a new attribute, then TA generates the corresponding attribute

key for DU.

(5) TA checks the version of every attribute key of DU. If it‘s

not the same with the current version, then TA updates the

corresponding attribute key for DU.

In the stage of user authorization, TA updates attribute keys

for DU according to the attribute description field, which is

stored with SK. It describes which attributes DU has and their

corresponding versions. TA also keeps attribute description

field of DU in database. When DO changes the attribute of

DU, the attribute description field on the TA side is also

updated. Thus, when DU logins on the system, the attribute

description field on itself may be different from that of TA.

TA has to update the attribute keys for DU according to the

attribute description field just as described above.

4) Access Files

When DU requests to access a certain data file, Function 4

is used to decrypt data. The specific process is described as

follows:

(1) DU sends a request for data to the cloud.

(2) Cloud receives the request and checks if the DU meets the

access requirement. If DU can‘t meet the requirement, it

refuses the request, otherwise it sends the ciphertext to

DU.

(3) DU receives the ciphertext, which includes ciphertext of

data files and ciphertext of the symmetric key. Then DU

executes the Function 4 to decrypt the ciphertext of the

symmetric key with the assistance of DSP.

(4) DU uses the symmetric key to decrypt the ciphertext of

data files.

5) Privilege Revoked

DO can revoke attributes from a DU. The process is as

follows.

(1) DO informs TA and the cloud that one attribute has been

revoked from a specific DU.

(2) TA and the cloud update the information of DU in

database.

(3) DO marks the corresponding bit of the attribute

description field of data files.

 International Journal on Applications in Information and Communication Engineering

Volume 4: Issue 2: May 2018, pp 41 - 54. www.aetsjournal.com ISSN (Online) : 2394 - 6237

--

48

This strategy implements the asynchronous processing of

attribute revocation and attribute keys update operations.

When DO wants to revoke one attribute from a DU, TA only

updates the database and doesn‘t update attribute keys for DU

simultaneously.

6) Documentation Updates

As a result of lazy re-encryption, when DO revokes one

attribute from a DU, the revoked attribute is not updated.

When the data file is updated, if it has one attribute that has

been revoked, this attribute should be updated. The specific

process is as follows.

(1) DO checks if there is any bit in the description field of

data files has been set to ‗#‘.

(2) DO informs TA which attributes should be updated. All

the attributes that should be updated form a set is called

Anew.

(3) TA chooses a new value in G0 for every attribute in Anew

to replace the original one, and updates the description

field of DO in DO-PK/MK table, changing the

corresponding attribute description bit to the new value.

 TA sends a new PK to DO, and DO uses the new PK to

encrypt data files.

(4) DO sets the ‗#‘ bit of the description field of the

corresponding data file to 1.

This operation is critical for lazy re-encryption. If the

system updates attributes immediately after the attribute

revocation operation, excessive overhead occurs. Taking into

account that DU already know the content of a data file after

accessing it, there is no need to re-encrypt this data file with a

new symmetric key immediately. The DU who has been

revoked the access privileges should not be able to access the

updated content. In this situation, the system should re-encrypt

the data file. Thus, in LDSS, attribute updates are delayed

until related data files are updated. In order to decide which

attribute should be updated, the corresponding bit in the

description field has to be marked as ‗#‘.

IV. SECURITY ANALYSIS

The security assessment is based on the security

assumptions we described in Section 3. The possible scenarios

that malicious users may expose plaintext to others are not

discussed.

1) Security Analysis of LDSS-CP-ABE:

LDSS-CP-ABE algorithm is designed on top of Attribute-

Based Encryption (ABE). The security of ABE is based on the

bilinear diffie-hellman assumptions.

2) Bilineardiffie-hellman assumptions:

When attackers only have a, b, c, z  Zp, there exists no

polynomial algorithm that can get the relationship between

(A=ga, B=gb, C=gc, Z=e(g, g)ab/c) and (A=ga, B=gb, C=gc,

Z=e(g, g)z). In other words, attackers cannot get Z=e(g, g)z

that corresponds to e(g, g)ab/c.

The security of CP-ABE is proved in BSW CP-ABE [27]

based on above assumptions. Since LDSS-CP-ABE is a

variation of the original BSW CP-ABE, the structure of the

ciphertext used in LDSS-CP-ABE is similar to that of original

BSW CP-ABE, thus the encryption and decryption processes

are safe. The difference between our work and BSW CP-ABE

is that a version attribute is added to the access control tree. It

only changes the structure of the access tree slightly. It

contains two sub trees in our work: Ta and Tv. If a DO chooses

a first-order polynomial q (x), and let S = q(0), S1 = q (1), S2 =

q (2). The tuple {S1, Ta} is sent to ESP. According to the

secret sharing scheme, even if S1 is exposed to DO, S2 and S

are safe.

3) Data Confidentiality against Conspiracy

The data confidentiality is taken into account from two

aspects. In LDSS, data are encrypted with a symmetric key.

The security of this part is guaranteed by symmetric

encryption mechanism. Next, the symmetric key is encrypted

by attribute encryption. The security of this part depends on

the encryption process.

The security of the core algorithm in the encryption process

is proved in the previous section. Here, we

discuss the situation that the symmetric key is safe even if a

malicious user, ESP and DSP conspired to get the key. The

conspiracy attack can be divided into several kinds, namely

conspiracy between different users, DSP and ESP, users and

cloud.

First, consider the conspiracy between different users. It can

be proven that different users with different attributes cannot

combine their attributes to decrypt data files. Since users get

different r from TA, which is used to generate attribute keys

for users, different users with same attributes get different

keys. When decrypting data files, only when all the keys are

generated from the same r can they be combined to decrypt

data files, thus effectively preventing the conspiracy between

users.

Second, consider the conspiracy between ESP and DSP.

ESP gets {S1 , Ta} and PK from DO and TA, and DSP gets

SKu’, CT from DU. Combining all these information, ESP and

DSP can finally get e(g, g)
t(ar)

/

S
 , e(g, g)

rS
 , e(g, g)

a
 , which

cannot deduce e(g, g)
aS

 thanks to the bilinear diffie-hellman

assumptions, thus protecting CTk.

Last, consider the conspiracy between the cloud and DU.

The cloud may send data packets to whom do not meet the

access control policy. However, even if DU illegally obtains

ciphertext, it cannot get the plain context since it doesn‘t have

the right attribute keys.

4) Confidentiality of Access Control Policy

The security of access control policy is that no participants

could know the specific content of the access control policy

except data owners. LDSS introduces attribute description

field so that access control policy is described by the

corresponding attribute description bit. ESP and the Cloud can

only get the relationships between different attribute

 International Journal on Applications in Information and Communication Engineering

Volume 4: Issue 2: May 2018, pp 41 - 54. www.aetsjournal.com ISSN (Online) : 2394 - 6237

--

49

description bits, but not the specific content of access control

strategy, thus protecting the access control strategy.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of LDSS in

terms of computational and storage overheads, respectively.

1) Experimental Settings

To evaluate the efficiency of the proposed solution, we

conduct several experiments. The test of LDSS is done on a

Core 2 DUO machine, which has 2.0GHz CPU with the Linux

operating system (Ubuntu 12.10) installed.

The core algorithm of LDSS takes advantage of the CP-

ABE tools developed by Bethencourt et al [15]. It‘s based on

160-bit elliptic curve group, which derives from the super

singular curve
y 2 x 3  x

over a 512-bit finite field. CP-

ABE tools have three basic operations, namely exponentiation

and pairing on G0 and exponentiation on G1. These three

operations take 4.99ms, 4.98ms and 0.58ms respectively in

our experimental environment.

TABLE 1 - COMPUTATIONAL OVERHEAD OF BASIC

OPERATIONS OF ABE SCHEMES

Types of

Devices Pairing Exponentiation Multiplication

PC 20 ms 5 ms 0.7 ms

Mobile 550 ms 177 ms 26 ms

The cost of access control mechanisms is closely related to

the size of access control policy. To reflect closely to the

reality, in our experiment, the number of attributes owned by

individual users is fixed, and the size of access control policy

varies. We assume that the average number of attributes

owned by DO is 10, and the number of attributes included in

the access policies varies from 1 to 32.

In order to simplify the representation, we define the

following symbols:

|A|: The number of attributes owned by DO.

|Au| : The number of attributes owned by DU.

|Ta|: The number of leaf nodes in the access control tree .

|T|: The number of leaf nodes in the access control

tree with version attribute, and |T| = |Ta| +1.

LG0, LG1, Lz: The size of an element in G0 group, G1

group and Z.

T_G0: The time needed for exponentiation operation in

group G0.

T_Gm: The time needed for multiplication operation in

group Gm.

T_Ge: The time needed for pairing operation in group G0.

T_G1: The time needed for exponentiation operation in

group G1.

2) Computational Overhead Evaluation

We first evaluate the computational overhead of LDSS and

compare it with existing access control schemes.

A. Computational Overhead of LDSS

According to [26], the basic operations of attribute based

encryption mechanisms (pairing, exponentiation,

multiplication) vary a lot between mobile devices and PCs.

The experimental results are shown in Table 1.

It is clear that a single pairing operation, exponentiation

operation, multiplication operation take much longer time on

mobile devices than on PCs, which is 27, 35 and 38 times of

that on PCs. We focus the analysis of computational overhead

on pairing operation and exponentiation operation. Other

operations that take little time are ignored.

B. User registration

The overhead of user registration comes from the function

Setup(), which only needs to be executed once and the

overhead is on the TA‘s side. The main overhead of this

execution includes one exponentiation operation and one

pairing operation on G0 and one exponentiation operation on

G1, namely. The main overhead is: T_G0 +T_Ge + T_G1.

TABLE 2 - COMPUTATIONAL OVERHEAD OF DATA

SHARING

Exponentiation

on G0

Exponentiation

on G1 Paring on G0

ESP 2|Ta| 0 0

DO 3 1 0

TABLE 3 -COMPUTATIONAL OVERHEAD OF DATA

ACCESS

Exponentiation

on G0

Exponentiation

on G1 Paring on G0

DSP 0 |Ta| 2|Ta|+1

DO 0 1 0

C. Data sharing

The cost of data sharing comes from the execution of the

function Encryption(), which is executed every time when

sharing data files. The function Encryption() includes

exponentiation operation on G0 (the number of operations is

proportional to the number of attributes included in the access

strategy) and one exponentiation operation on G1. The cost of

this function depends on which one does the encryption

operation. Before introducing ESP, the cost is on DO. After the

usage of ESP, the cost on DO is reduced to a constant value,

and is no longer associated with the number of attributes in

access control strategies. The overhead on ESP and DO is

shown in Table 2.

 International Journal on Applications in Information and Communication Engineering

Volume 4: Issue 2: May 2018, pp 41 - 54. www.aetsjournal.com ISSN (Online) : 2394 - 6237

--

50

D. User authorization

The cost of user authorization comes from function

KeyGen(), which is executed the first time a DU tries to read a

DO‘s data. TA executes this function for authorization. It

includes exponentiation on G0 and multiplication on G0, of

which the number is proportional to the number of attributes

owned by DU . The overhead is: (2 |Au| +1) T_G0 + |Au|

T_Gm.

E. Accessing data files

The cost of accessing data files comes from function

Decryption(), which is executed every time a file is accessed.

This function includes pairing operations on G0,

multiplication operations on G0 and exponentiation operation

on G1. The number of these three kinds of operations is all

proportional to the number of attributes included in the access

strategy. The cost of accessing data files depends on which

one does the decryption operation. Before introducing DSP,

the overhead is on DU. After the introduction of DSP, the cost

on DU is reduced to a constant value. The overhead of

decryption is related to the number of attributes involved in

the data file and how these attributes are combined. In the

worst case, all the attributes keys related to the access control

strategy are needed for decryption. In this case, the overhead

of ESP and DO is shown in Table 3.

TABLE 4 - COMPUTATIONAL OVERHEAD WITH

DIFFERENT CP-ABES

 Bethencourt BSW CP-ABE LDSS

Data
sharing

(2|Ta|+1)T_

G0+T_G1

(4|Ta|+1)T_

G0+T_G1 3T_G0+T_Gm

Data

access (2|Au|+1)T_Ge (2|Au|+1)T_Ge T_G0+T_Gm

Figure 7. The computational overhead of authorization.

F. User revocation

LDSS uses lazy re-encryption. If there is user revocation

operation, TA and the cloud only need to update the contact-

attribute-information table. Only when data files are updated

should the attributed be updated and data files be re-encrypted.

As a result, multiple revocation operations are merged into

one, reducing the overall overhead. The cost of data re-

encryption is the same with sharing data files. Thus, no further

discussion is placed here.

G. Computational Overhead with Different CP-ABE

Schemes

DO‘s overhead in different ABE schemes is shown in Table

4. As shown in Table 4, in existing programs, the overhead on

mobile user DU‘s side is proportional to the number of

attributes in access control policy. In LDSS, the overhead is a

small constant value.

H. Measurement of Computational Overhead of LDSS

We measure the computational overhead of LDSS through

experiments. The results are as follows.

(1) Registration cost

The average registration time for a single user is 50ms.

(2) Authorization cost

The time needed for authorization is proportional to the

number of attributes owned by DU. Fig. 7 shows the time

needed for user authorization when the number of attributes

owned by user is 2,4,8,16,32.

As can be seen in Fig. 7, the time of authorization is

proportional to the number of attributes in both BSW CP-

ABE [27] and LDSS.

In both scenarios, the authorization time is still lower than

1s when the number of attributes rises to 32. Authorization

time in LDSS is just slightly longer because it introduces the

version attribute.

(3) The cost of encryption and decryption

Figure 8. The relationship between encryption and decryption time

and the size of access control policy.

 International Journal on Applications in Information and Communication Engineering

Volume 4: Issue 2: May 2018, pp 41 - 54. www.aetsjournal.com ISSN (Online) : 2394 - 6237

--

51

Figure 9. The relationship between users‘ overhead and the size of

access control policy.

Figure 10. The overhead of attribute revocation.

The time needed for encryption and decryption is shown in

Fig. 8.

As can be seen from Fig. 8, the overhead of encryption and

decryption operations is proportional to the number of

attributes in access control policy. In LDSS, it takes a little

longer. Besides, the encryption and decryption time are lower

than 1s when the number of attributes rises to 32 in both

schemes.

Fig. 9 shows how the overhead on user side in BSW CP-

ABE and LDSS changes with the size of access control policy.

In LDSS, since the main encryption and decryption operations

are given to the proxy server, the overhead on users‘ side is

basically a constant value, on longer changing with the size of

access control policy.

I. The overhead of user revocation

From the above analysis, the main overhead of user

revocation comes from user attribute update operations. The

overhead is related to the number of revoked attributes and

related users. Assume that there are 32 attributes in the

attribute set, and the average number of attributes owned by

DU is 10. Fig. 10 shows how the overhead of user revocation

changes with the number of data users when the number of

revoked attributes is 2 and 4, respectively.

 TABLE 5 - STORAGE OVERHEAD WITH

DIFFERENT CP-ABES

CP-ABEs PK MK SK CT

BSW[27] 3 LG0+ LG1 Lz+ LG0
(2|Au|+1)

LG0

(2|Ta|+1)

LG0+ LG1

Waters[30]
(|A|+2)

LG0+ LG1
LG0

(|Au|+2)

LG0

(2|Ta|+1)

LG0+ LG1

LDSS 3 LG0+ LG1 LG0
(|Au|+4)

LG0

(2|Ta|+3)

LG0+ LG1

As shown in Fig. 10, the overhead of user revocation is

proportional to the number of data users, and LDSS works

better than other CP-ABE. When the number of revoked

attributes grows bigger, this advantage becomes more obvious.

In a word, the experimental results show that LDSS reduces

the overhead on users‘ side significantly at a small cost of the

overall growth on storage and computation. It also performs

better in user revocation operations.

J. Storage Overhead Evaluation

We also evaluate the storage overhead of LDSS and

compare it with existing CP-ABE schemes.

 Storage Overhead with Different CP-ABE Schemes

DO needs to keep PK, which is of the size (|A|+3)LG0+

LG1. DU also needs to keep SK, which is of the size (|Au|+4)

LG0. TA needs to keep PK and MK. MK is of the size LG0.

The cloud needs to keep the symmetric key ciphertext CT,

which is of the size (2|Ta|+3) LG0+ LG1. DSP / ESP only do

calculations and need not retain any value.

Table 5 shows the comparison of storage overhead with

different CP-ABE schemes.

K. Measurement of Storage Overhead of LDSS

 LDSS is based on 160-bit elliptic curve group, which is

derived from the super singular curve y2
  x

3
  x over a 512-

bit finite field. The size of LG0 、 LG1 、 Lz is 40B, 64B and

20B, separately.

In LDSS, the storage overhead needed for access control is

the storage of PK/MK, SK and CT. PK and MK is 156B and

888B separately. The size of CT grows with the number of

attributes in access control policy and the size of SK grows

with the number of attributes in DU‘s attribute set.

When sharing data files, the data files is encrypted with

symmetric key, then the symmetric key itself is encrypted by

CP-ABE. Since the size of data files remains the same after

encryption, we only evaluate the size change of the

symmetric key.

 Figure 11 shows the size of symmetric key after

encryption when the number of attributes in access control

policy is 1, 2, 4, 8, 16 and 32. It can be concluded that the size

of ciphertext rises with the number of attributes in access

control policy in both BSW CP-ABE [15] and LDSS. The size

of symmetric key ciphertext of BSW CP-ABE is a little bigger

than that of LDSS. When the number of attributes rises to 32,

 International Journal on Applications in Information and Communication Engineering

Volume 4: Issue 2: May 2018, pp 41 - 54. www.aetsjournal.com ISSN (Online) : 2394 - 6237

--

52

the size of symmetric key ciphertext is smaller than 10KB in

both schemes, which is very small compared to the data files.

For DU authorization, the size of SK is linear with the

number of attributes in DU‘s attribute set. Fig. 12 shows the

size of SK when the number of attributes in DU‘s attribute set

is 2, 4, 8 and 32, respectively.

When the number of attributes in the attribute set rises to

32, DU‘s SK is smaller than 1KB in both schemes, which is

very small compared to the size of data files. The size of SK in

LDSS is a little bigger for introducing an attribute version, but

the difference is small.

Figure 11. The relationship between symmetric key ciphertext and

access control policy.

Figure 12. The storage overhead of SK.

In sum, in LDSS, the storage overhead needed for access

control is very small compared to data files.

L. Communication Overhead Evaluation

The communication overhead of access control happens

when TA sends keys to DO/DU at the stage of system

initialization and user authorization, and DO/DU

encrypt/decrypt the symmetric key which is used to encrypt

the data files. According to the experimental results of

Section 5.3, the key sent to TA is the MK of size 888B. The

keys sent to DU are the attribute keys which are 8969B when

the number of attributes owned by DU rises to 32. According

to function 3 and 4, intermediate results of

encryption/decryption transferred between DO/DU and

ESP/DSP are of the size smaller than CT, which is lower than

10000B. Since the transferred data are in small amount, the

communication cost is negligible.

VI. RELATED WORKS

In this section, we focus on the works of ciphertext access

control schemes which are closely related to our research.

Access control is an important mechanism of data privacy

protection to ensure that data can only be acquired by

legitimate users. There has been substantial research on the

issues of data access control in the cloud, mostly focusing on

access control over ciphertext. Typically, the cloud is

considered honest and curious.

Sensitive data has to be encrypted before sending to the

cloud.User authorization is achieved through key distribution.

The research can be generally divided into four areas: simple

ciphertext access control, hierarchical access control, access

control based on fully homomorphic encryption [1][2] and

access control based on attribute-based encryption (ABE).

Simple ciphertext access control refers to that after data file

encryption, the encryption keys are distributed in a secure way

to achieve authorization for trusted users [3]. To reduce the

overhead of massive user key distribution, Skillen and

Mannan [4] designed a system called Mobiflage that enables

PDE (plausibly deniable encryption) on mobile devices by

hiding encrypted volumes via random data on a device‘s

external storage. However, the system needs to obtain large

amount of information of keys. [5] borrows the access control

method used in conventional distributed storage

[4][6][12][14], separating users into different groups

according to access rights and assign different keys to groups.

This reduces the overhead of key management, but it cannot

satisfy the demand for fine-grained access control.

Hierarchical access control has good performance in

reducing the overhead of key distribution in ciphertext access

control [7]. As a result, there are substantial research on

ciphertext access control [8][9][10][11] based on hierarchical

access control method. In hierarchical access control method,

keys can be derived from private keys and a public token

table. However, the operation on token table is complicated

and generates high cost. Besides, the token table is stored in

the cloud. Its privacy and security cannot be guaranteed [12].

Full homomorphic encryption algorithm can operate

directly on the ciphertext. Its operating results are the same

with operating on plaintext and then encrypting the data. [13]

uses full homomorphic encryption algorithm to do operations

such as retrieval and calculation directly on ciphertext. It can

solve the problem that the cloud is untrustworthy

fundamentally because all data update operations and user

privilege change operations can be done directly on ciphertext.

However, this encryption scheme is too complex to implement

in practical applications.

Attribute-based encryption algorithm is derived from

identity-based encryption. It embeds decryption rules in the

encryption algorithm, which avoids frequent key distribution.

Lai et al [14] and Bethencourt et al [15] proposed key-policy

attribute-based encryption (KP-ABE) and ciphertext-policy

 International Journal on Applications in Information and Communication Engineering

Volume 4: Issue 2: May 2018, pp 41 - 54. www.aetsjournal.com ISSN (Online) : 2394 - 6237

--

53

attribute-based encryption (CP- ABE). In practical

applications, CP-ABE has been extensively studied

[16][17][18] since it is similar to role- based access control

(RBAC) scheme [19]. In CP-ABE, the possession of one

attribute key means that the key owner owns corresponding

attribute, and attribute keys cannot be reclaimed once they are

distributed. As a result, when a data user‘s attribute is revoked,

how to ensure data privacy becomes a difficult issue [14].

Liang et al [16] propose attribute-based proxy re-encryption

(ABPRE) scheme to solve this problem. However, in their

solution, when a user‘s attribute is revoked, all other users

who own this attribute will lose this attribute at the same time,

which cannot satisfy fine-grained access control needs. Tian et

al [20] combine CP-ABE and public key cryptography to

achieve ciphertext access control. However, it brings high cost

to data owners. Di Vimercati et al [21] add a time stamp to

attributes to limit the use of attribute keys to deal with

attribute revocation problem. However, in this scenario, data

users need to periodically apply for attribute keys and the

users‘ attribute cannot be revoked before the time stamp

expires. Yu et al [22] propose some work of revocation can be

outsourced to CSP, whereas CSP should have a certain

credibility, and access control policy that contains ―or‖

relationship or ―threshold‖ relationship is not supported. Yu et

al [23] also proposed a scheme to address the cloud computing

challenging that keep sensitive user data confidential against

untrusted servers by exploiting and uniquely combining

techniques of attribute-based encryption (ABE), proxy re-

encryption, and lazy re-encryption. Yang et al. [22] proposed a

novel scheme that enabling efficient access control with

dynamic policy updating for big data in the cloud that

focusing on developing an outsourced policy updating method

for ABE systems. It also designed policy updating algorithms

for different types of access policies.

All the above works focus on the issue of data access

control in the cloud. They are mainly for non-mobile devices

and cannot be applied for data sharing in mobile cloud

environment. Regarding to data privacy in mobile cloud, some

works have been done in this field [23]. Huang et al [24]

propose MobiCloud, in which traditional Mobile Ad-hoc

NETworks (MANETs) is transformed into service-oriented

communication architecture. In this architecture, each mobile

device is regarded as a service node, and the operations are

outsourced to the cloud. However, in MobiCloud, users need

to completely trust the cloud, which is not the case in reality.

Livshits and Jung [25] designed and implemented a graph

theoretic algorithm to place mediation prompts that protect

every

resource access, while avoiding repetitive prompting and

prompting in background tasks or third-party libraries, for the

problem of mediating resource accesses in mobile

applications. Zhou et al [26] proposed an ABDS scheme to

achieve secure data storage in the cloud. However, this

scheme is not suitable for data sharing and has no clear

solution for attribute revocation. Tysowski et al. [27]

considered a specific cloud computing environment where

data are accessed by resource-constrained mobile devices,

and proposed novel modifications to ABE, which assigned the

higher computational overhead of cryptographic operations to

the cloud provider and lowered the total communication cost

for the mobile user.

In summary, current proposals on data access control in the

cloud are mostly for non-mobile terminals, which is not

suitable for mobile devices. Besides, current solutions don‘t

solve the problem of user privilege change scenarios very well

since they bring high revocation cost. This is not applicable

for mobile devices which only have limited computing

capacity and power. Existing studies on mobile cloud don‘t

have a good solution to secure data sharing when servers are

not credible. In a word, there is no proper solution that can

solve the problem of secure data sharing in mobile cloud. In

this paper, we propose a lightweight data sharing scheme

(LDSS) for mobile cloud applications. It adopts CP-ABE, a

technology used in access control in the normal cloud

environment, but changes the structure of access control tree

to make it suitable for mobile cloud. LDSS is provably secure,

and is demonstrated to be more efficient and scalable than

state- of-the-art ABE schemes.

VII. CONCLUSION AND FUTURE WORK

In recent years, many studies on access control in cloud are

based on attribute-based encryption algorithm (ABE).

However, traditional ABE is not suitable for mobile cloud

because it is computationally intensive and mobile devices

only have limited resources. In this paper, we propose LDSS

to address this issue. It introduces a novel LDSS-CP-ABE

algorithm to migrate major computation overhead from mobile

devices onto proxy servers, thus it can solve the secure data

sharing problem in mobile cloud. The experimental results

show that LDSS can ensure data privacy in mobile cloud and

reduce the overhead on users‘ side in mobile cloud. In the

future work, we will design new approaches to ensure data

integrity. To further tap the potential of mobile cloud, we will

also study how to do ciphertext retrieval over existing data

sharing schemes.

VIII. ACKNOWLEDGMENT

This work is supported by National Natural Science

Foundation of China under grants 61173170, 61300222,

61370230, 61433006 and U1401258, Innovation Fund of

Huazhong University of Science and Technology under grants

2015TS069 and 2015TS071, Science and Technology Support

Program of Hubei Province under grant 2014BCH270 and

2015AAA013, Science and Technology Program of

Guangdong Province under grant 2014B010111007, and and

Youth Talent Project of Science and Technology Research

Program of Hubei Provincial Education Department under

grant Q20151111.

 International Journal on Applications in Information and Communication Engineering

Volume 4: Issue 2: May 2018, pp 41 - 54. www.aetsjournal.com ISSN (Online) : 2394 - 6237

--

54

References

[1] Gentry C, Halevi S. Implementing gentry‘s fully-homomorphic

encryption scheme. in: Advances in Cryptology–EUROCRYPT 2011.

Berlin, Heidelberg: Springer press, pp. 129-148, 2011.
[2] Brakerski Z, Vaikuntanathan V. Efficient fully homomorphic encryption

from (standard) LWE. in: Proceeding of IEEE Symposium on

Foundations of Computer Science. California, USA: IEEE press, pp. 97-
106, Oct. 2011.

[3] Qihua Wang, Hongxia Jin. "Data leakage mitigation for discertionary

access control in collaboration clouds". the 16th ACM Symposium on
Access Control Models and Technologies (SACMAT), pp.103-122, Jun.

2011.

[4] Adam Skillen and Mohammad Mannan. On Implementing Deniable
Storage Encryption for Mobile Devices. the 20th Annual Network and

Distributed System Security Symposium (NDSS), Feb. 2013.

[5] Wang W, Li Z, Owens R, et al. Secure and efficient access to outsourced
data. in: Proceedings of the 2009 ACM workshop on Cloud computing

security. Chicago, USA: ACM pp. 55-66, 2009.

[6] Maheshwari U, Vingralek R, Shapiro W. How to build a trusted
database system on untrusted storage. in: Proceedings of the 4th

conference on Symposium on Operating System Design &

Implementation-Volume 4. USENIX Association, pp. 10-12, 2000.
[7] Kan Yang, Xiaohua Jia, Kui Ren: Attribute-based fine-grained access

control with efficient revocation in cloud storage systems. ASIACCS

2013, pp. 523-528, 2013.
[8] Crampton J, Martin K, Wild P. On key assignment for hierarchical

access control. in: Computer Security Foundations Workshop. IEEE

press, pp. 14-111, 2006.
[9] Shi E, Bethencourt J, Chan T H H, et al. Multi-dimensional range query

over encrypted data. in: Proceedings of Symposium on Security and

Privacy (SP), IEEE press, 2007. 350- 364
[10] Cong Wang, Kui Ren, Shucheng Yu, and Karthik Mahendra Raje Urs.

Achieving Usable and Privacy-assured Similarity Search over

Outsourced Cloud Data. IEEE INFOCOM 2012, Orlando, Florida,
March 25-30, 2012

[11] Yu S., Wang C., Ren K., Lou W. Achieving Secure, Scalable, and Fine-

grained Data Access Control in Cloud Computing. INFOCOM 2010,
pp. 534-542, 2010

[12] Kan Yang, Xiaohua Jia, Kui Ren, Bo Zhang, Ruitao Xie: DAC- MACS:

Effective Data Access Control for Multiauthority Cloud Storage
Systems. IEEE Transactions on Information Forensics and Security, Vol.

8, No. 11, pp.1790-1801, 2013.

[13] Stehlé D, Steinfeld R. Faster fully homomorphic encryption. in:

Proceedings of 16th International Conference on the Theory and

Application of Cryptology and Information Security. Singapore:
Springer press, pp.377-394, 2010.

[14] Junzuo Lai, Robert H. Deng ,Yingjiu Li ,et al. Fully secure key- policy

attribute-based encryption with constant-size ciphertexts and fast

decryption. In: Proceedings of the 9th ACM symposium on Information,
Computer and Communications Security (ASIACCS), pp. 239-248, Jun.

2014.

[15] Bethencourt J, Sahai A, Waters B. Ciphertext-policy attribute based
encryption. in: Proceedings of the 2007 IEEE Symposium on Security

and Privacy (SP). Washington, USA: IEEE Computer Society, pp. 321-

334, 2007.
[16] Liang Xiaohui, Cao Zhenfu, Lin Huang, et al. Attribute based proxy re-

encryption with delegating capabilities. in: Proceedings of the 4th

International Symposium on Information, Computer and
Communications Security. New York, NY, USA: ACM press, pp. 276-

286, 2009.

[17] Pirretti M, Traynor P, McDaniel P, et al. Secure atrribute-based systems.
in: Proceedings of the 13th ACM Conference on Computer and

Communications Security. New York, USA: ACM press, pp. 99-112,

2006.

[18] Yu S., Wang C., Ren K., et al. Attribute based data sharing with attribute

revocation. in: Proceedings of the 5th International Symposium on

Information, Computer and Communications Security (ASIACCS), New
York, USA: ACM press pp. 261-270, 2010.

[19] Sandhu R S, Coyne E J, Feinstein H L, et al. Role-based access control

models. Computer, 29(2): 38-47, 1996.
[20] Tian X X, Wang X L, Zhou A Y. DSP RE-Encryption: A flexible

mechanism for access control enforcement management in DaaS. in:

Proceedings of IEEE International Conference on Cloud Computing.

IEEE press, pp.25-32, 2009

[21] Di Vimercati S D C, Foresti S, Jajodia S, et al. Over-encryption:
management of access control evolution on outsourced data. in:

Proceedings of the 33rd international conference on Very large data

bases. Vienna, Austria: ACM, pp. 123-134, 2007.
[22] Kan Yang, Xiaohua Jia, Kui Ren, Ruitao Xie, Liusheng Huang:

Enabling efficient access control with dynamic policy updating for big

data in the cloud. INFOCOM 2014, pp.2013-2021, 2014.
[23] Jia W, Zhu H, Cao Z, et al. SDSM: a secure data service mechanism in

mobile cloud computing. in: Proceedings of 30th IEEE International

Conference on Computer Communications. Shanghai, China: IEEE, pp.
1060-1065, 2011.

[24] D. Huang, X. Zhang, M. Kang, and J. Luo. Mobicloud: A secure mobile

cloud framework for pervasive mobile computing and communication.
in: Proceedings of 5th IEEE International Symposium on Service-

Oriented System Engineering. Nanjing, China: IEEE, pp. 90-98, 2010.

[25] Benjamin Livshits, Jaeyeon Jung. Automatic Mediation of Privacy-

Sensitive Resource Access in Smartphone Applications. USENIX

Security, pp.113-130, Aug. 2013.

[26] Zhou Z, Huang D. Efficient and secure data storage operations for
mobile cloud computing. in: Proceedings of 8th International

Conference on Network and Service Management (CNSM 2012), Las

Vegas, USA: IEEE, pp. 37-45, 2012.
[27] P. K. Tysowski and M. A.Hasan. Hybrid attribute- and re- encryption-

based key management for secure and scalable mobile applications in

clouds. IEEE Transactions on Cloud Computing, vol. 1, no. 2, pp. 172-
186, Nov. 2013.

[28] Boneh D, Franklin M. Identity-based encryption from the Weil pairing.

in: Proceedings of the Advances in Cryptology. Berlin, Heidelberg:
Springer-Verlag, pp. 213−229, 2001.

[29] Sahai A, Waters B. Fuzzy identity based encryption. in: Proceedings of

the Advances in Cryptology. Aarhus, Denmark: Springer-Verlag,
pp.457-473, 2005.

[30] Shamir A. How to share a secret. Communications of the ACM,1979, 22

(11): 612-613

