
International Journal on Applications in Engineering and Technology

Volume 10: Issue 2 : May 2024, pp 16 –22 www.aetsjournal.com ISSN (Online) : 2455 - 0523

--

16

Abstract— This article proposes a novel dynamic key

management approach for IoT networks, aiming to enhance

security and scalability. The key novelty lies in the integration

of lightweight protocols, the adoption of the Speck symmetric

algorithm, and the application of clustering techniques to

optimize network efficiency.The key aspects of this research

encompass a dynamic key management process designed to

adapt to evolving network conditions. The methodology

involves the utilization of the Contiki-NG simulator, offering a

realistic representation of IoT network dynamics and resource

constraints.Simulation results demonstrate the effectiveness of

the proposed method, showcasing improvements in various

performance parameters such as energy consumption, memory

utilization, latency, communication overhead, and

computational overhead. Comparative analysis with an

existing dynamic keying techniques called CSDKT for

assessing the performance of the proposed dynamic key

management approach in the context of IoT networks.

Keywords : Internet of Things; Dynamic Key management;

Speak Symmetric algorithm; Clustering; Scalability

I. INTRODUCTION

he Internet of Things (IoT) [1], [2]represents a

transformative paradigm that seamlessly

integrates physical devices, sensors, and actuators

into a networked ecosystem, allowing them to

communicate and exchange data. This

interconnected web of "things" encompasses a wide

array of objects, from everyday household items

and industrial machinery to wearable devices and

smart city infrastructure. The fundamental goal of

IoT is to enhance efficiency, automation, and user

Thiruppathy Kesavan. V,

 Faculty of Information Technology,

Dhanalakshmi Srinivasan Engineering College, Tamil Nadu, India

 Niranjani . K, Faculty of Information Technology, Dhanalakshmi

Srinivasan Engineering College, Tamil Nadu, India

Ramya Priyatharsini . T.G, Faculty of Information Technology,

Dhanalakshmi Srinivasan Engineering College, Tamil Nadu, India

Kanimozhi . P , Faculty of Information Technology, Dhanalakshmi

Srinivasan Engineering College, Tamil Nadu, India

experiences by facilitating real-time data exchange

and intelligent decision-making.

1) Security Challenges in IoT

While the advantages of IoT are substantial, the

proliferation of interconnected devices raises

significant security concerns. The very nature of

IoT, characterized by a vast and heterogeneous

network of devices, amplifies the attack surface for

malicious actors. Security challenges in IoT can be

categorized into several key areas such as Device

Heterogeneity, Data Privacy, Scalability and

Network Connectivity[2]. The disadvantages of IoT

in terms of security are Inadequate Authentication,

Limited Resources, Firmware and Software

Vulnerabilities, Key management and

Interoperability Challenges. Among these, one of

the foremost concerns being the robust management

of cryptographic keys in IoT networks.

2) Challenges in Key Management

Managing cryptographic keys in IoT networks is a

challenging endeavor due to the dynamic and

resource-constrained nature of these devices[1]. The

sheer volume and heterogeneity of IoT devices pose

a significant challenge in deploying and maintaining

secure key management schemes. This complexity

is further exacerbated by the mobility of devices

and their susceptibility to various security

threats[2].

For instance, consider a smart home ecosystem

where interconnected devices ranging from door

locks to thermostats rely on cryptographic keys for

secure communication. In such a scenario, a

compromise in key management can lead to

unauthorized access, potentially jeopardizing the

safety and privacy of the inhabitants.

DYNAMIC KEY MANAGEMENT FOR IOT

NETWORKS USING LIGHTWEIGHT PROTOCOLS

AND SPECK SYMMETRIC ALGORITHM WITH

CLUSTER-BASED OPTIMIZ

THIRUPPATHY KESAVAN . V , NIRANJANI . K , RAMYA

PRIYATHARSINI . T.G, KANIMOZHI . P

T

International Journal on Applications in Engineering and Technology

Volume 10: Issue 2 : May 2024, pp 16 –22 www.aetsjournal.com ISSN (Online) : 2455 - 0523

--

17

3) Static Key Management Vulnerabilities

Traditionally, static key management approaches

have been employed in IoT networks, where a fixed

set of cryptographic keys is used for an extended

period. However, this static nature proves to be a

vulnerability, as intruders can exploit compromised

keys over time[3]–[5]. In a dynamic and evolving

IoT environment, the inflexibility of static key

management renders networks susceptible to

malicious activities, leading to unauthorized data

access and potential device manipulation.

To illustrate, imagine a smart healthcare system

relying on static key management. If a malicious

actor gains access to the cryptographic keys, they

could manipulate patient data, compromise medical

device functionality, and breach confidentiality.

4) Dynamic Key Management Advantages

Recognizing the limitations of static key

management, dynamic key management emerges as

a compelling solution. Dynamic key management

involves the continuous generation and

modification of cryptographic keys in response to

changes in the network environment[3]–[5]. This

adaptability not only enhances the security posture

of IoT networks but also mitigates the risks

associated with compromised keys.Consider the

benefits of dynamic key management in a smart

transportation system[6], [7]. As vehicles move

within the network, dynamic key updates thwart

potential intruders, ensuring secure communication

and preventing unauthorized access to critical

vehicular systems.

In this context, we propose "SpeckDKM," a novel

Dynamic Key Management approach tailored for

IoT networks. SpeckDKM leverages the Speck

symmetric algorithm for cryptographic operations

and integrates clustering techniques to optimize

network efficiency. By dynamically managing

cryptographic keys, SpeckDKM aims to strengthen

IoT networks against evolving security threats while

addressing the inherent challenges posed by

resource constraints.This paper delves into the

details of SpeckDKM, detailing its methodology,

cluster-based optimization, and the advantages it

offers over traditional static key management

approaches. Through comprehensive simulations,

we assess SpeckDKM's performance in terms of

energy consumption, memory utilization, latency,

communication overhead, and computational

overhead.

5) Related works

Static key management has traditionally been

employed in IoT networks and sensor networks,

where fixed cryptographic keys are utilized for an

extended duration. Static key management schemes

face inherent vulnerabilities that can compromise

the security of IoT networks. Commonly observed

disadvantages includeLong-Term Key

ExposurePerrig, A.[8], Inflexibility to Dynamic

EnvironmentsZhu, S.[9]several other challenges in

distributing and updating static keys across a large

number of devices.While static key management

has been a prevalent approach, the identified

vulnerabilities underscore the necessity for more

adaptive and secure mechanisms, especially in the

context of the dynamic and resource-constrained

nature of IoT and sensor networks.

The article by Rana M et al. [10] highlights the

necessity for tailored lightweight key management

schemes in IoT, addressing resource constraints like

low processing power. It stresses the significance of

scalability and efficiency for secure communication

in extensive IoT deployments, managing a growing

number of devices. The importance of adaptability

to the dynamic nature of IoT networks, including

key renewal and addition, is highlighted. The paper

calls for future research focusing on application-

specific key management schemes for smart homes,

healthcare, and industrial IoT, accounting for

unique characteristics and security needs.

Thiruppathy Kesavan and Radhakrishnan

[11]proposed a Cluster-Based Secure Dynamic

Keying Technique for Heterogeneous Mobile

Wireless Sensor Networks, emphasizing

authentication during node mobility. Cluster heads

are strategically selected based on weighted

parameters, and dynamic key generation enhances

security. The bidirectional malicious node detection

technique eliminates potential threats. Simulations

validate efficient security and reduced energy

consumption during mobility. Comparative analysis

International Journal on Applications in Engineering and Technology

Volume 10: Issue 2 : May 2024, pp 16 –22 www.aetsjournal.com ISSN (Online) : 2455 - 0523

--

18

demonstrates the proposed technique's effectiveness

in preventing both insider and outsider attacks.

Vipin Kumar[3] has extensively explored

cryptographic techniques, emphasizing the pivotal

role of key management in ensuring the integrity,

authentication, and confidentiality of WSNs. While

existing studies have proposed various key

management schemes, the abstract and conclusion

of the present research introduce a novel approach,

SSEKMS, designed to address challenges in

dynamic key distribution and management in

WSNs. Notably, the literature gap addressed by

SSEKMS lies in its focus on storage efficiency,

resiliency against node capture, and energy

efficiency, although a more comprehensive

evaluation and quantitative analysis of these aspects

would contribute to a more nuanced understanding

of its comparative advantages in the existing

landscape.

Hua Yi Lin & Meng-Yen Hsieh[5] addresses the

critical challenge of information security in the

context of the Internet of Vehicles (IoV), where

personal details are exposed within the open

communication environment. Focusing on the

advancements in broadband wireless networks and

5G, the study proposes a multi-level security

infrastructure employing an M-tree based elliptic

curve digital signature algorithm (ECDSA).

Notably, the research contributes to the field by

integrating M-tree key management with secure

data transmission, providing adaptability to the

dynamic IoV topology and reducing the phases

required to resynchronize the system key. They

have highlighted the effectiveness of the proposed

key management system in adaptable and

expandable IoV environments, emphasizing its

operational and communication cost reductions

compared to conventional methods. Furthermore,

the study underscores the computational efficiency

achieved through the use of M-tree and simplified

cryptographic operations, ensuring information

security and secure IoV communication.

Yuxiang Zhou[7] proposed a novel authentication

and key agreement scheme based on challenge

authentication handshake protocols. The scheme

prioritizes mutual authentication, session key

security, and resistance against common attacks to

ensure secure communication between vehicles and

roadside units (RSUs). Notably, the research

emphasizes the flexible implementation of time

keys for dynamic vehicle management, providing a

unique advantage over existing schemes. The

proposed scheme is further validated through a

formal security proof under the random oracle

model, showcasing its reliability. The conclusion

reinforces the significance of the developed scheme,

emphasizing its achievement of secure

authentication, forward security, and resistance

against common network attacks.

Various optimization techniques have been

suggested to enhance the efficiency of IoT network

clusters. Notably, Azimi [12] and Al-Janabi[13]

concentrate on load balancing and latency

reduction. Azimi employs a particle swarm

optimization algorithm, while Al-Janabi introduces

a load-balanced PSO clustering algorithm.

Addressing energy efficiency, Iwendi[14] adopts a

hybrid metaheuristic algorithm for Cluster Head

selection, while Alazab[15] presents a multi-

objective approach for CH selection, incorporating

a modified Rider Optimization Algorithm.

Collectively, these studies underscore the

significance of considering diverse factors—such as

load balancing, latency, and energy efficiency—in

the optimization of IoT network clusters.

Advances in lightweight cryptographic algorithms

and optimization techniques will play a crucial role

in shaping the future landscape of key management

in these networks.

6) SpeckDKM - Dynamic Key Management with

Clustering

The Dynamic Key Management process is

designed to ensure the continuous generation and

modification of cryptographic keys in response to

changes in the network environment. The process

leverages the Speck symmetric algorithm [16]for

secure key operations and incorporates clustering

optimization to enhance scalability and efficiency.

The entire process is explained below:

1) Key Generation

Speck Symmetric Algorithm

International Journal on Applications in Engineering and Technology

Volume 10: Issue 2 : May 2024, pp 16 –22 www.aetsjournal.com ISSN (Online) : 2455 - 0523

--

19

 The Speck symmetric algorithm is employed for

key generation, denoted as Ki at each time instance

i.

 The key generation process can be represented as:

Ki=Speck_Key_Generation(Ki−1)

Here, Ki−1 is the key from the previous time

instance.

The pseudocode the key generation phase is given

below:
Algorithm 1: Speck Key Generation

Input:

- Previous Key: K_{i-1}

Output:

- New Key: K_i

Parameters:

- Word Size: w

- Number of Rounds: r

- Key Size: k

Constants:

- Alpha: 8

- Beta: 3

Function: Speck Key Generation(K_{i-1})

1. Initialize Key Schedule:

L = K_{i-1}[0 : w-1]

R = K_{i-1}[w : 2w-1]

2. Perform Key Expansion:

 for round = 1 to r:

 L = (L + R) <<< Beta

 L = L XOR round_constant

 R = (R XOR L) <<< Alpha

3. Generate New Key:

K_i = Concatenate(L, R)

4. Return K_i

2) Clustering Optimization

Weighted Parameters

 Determine the weight value (Wi) for each node

based on parameters such as node degree (ND),

average distance (Dav), node speed (Sav), and virtual

battery power (VBP).

 Normalize the weights to ensure a unified scale.

Cluster Head Selection

 Select high-configured nodes as cluster heads

based on the calculated weight values

The pseudocode for clustering optimization is

given as Algorithm 2 in which the adjustments may

be required based on specific considerations and

network characteristics:

Algorithm 2: Clustering Optimization

Input:

- Weighted Parameters: ND, Dav, Sav, VBP

- Network Nodes Information

- Number of Nodes: N

- Cluster Formation Threshold: Threshold

Output:

- Cluster Heads

Parameters:

- Weight Factors: w1, w2, w3, w4

Function: Clustering Optimization(ND, Dav, Sav, VBP, N,

Threshold)

1. Initialize Empty Cluster Head Set: CH_set = {}

2. Calculate Weighted Values for Each Node:

 for each node in Network:

W_node = w1 * ND[node] + w2 * Dav[node] +_

 w3 * Sav[node] + w4 * VBP[node]

3. Normalize Weighted Values:

W_normalized = Normalize(W_node)

4. Identify High-Configured Nodes as Cluster Heads:

 for each normalized weight in W_normalized:

 if normalized weight > Threshold:

 Add corresponding node to CH_set

5. Return CH_set

Function: Normalize(W_node)

1. Calculate Min and Max of W_node:

W_min = min(W_node)

W_max = max(W_node)

2. Normalize W_node:

W_normalized = (W_node - W_min) / (W_max - W_min)

3. Return W_normalized

Algorithm 3: Cluster Head Selection

Input:

- Weighted Parameters: ND, Dav, Sav, VBP

- Normalized Weight Threshold: Threshold

- Node Information

- Network Topology

Output:

- Cluster Heads

Parameters:

- Weight Factors: w1, w2, w3, w4

Function: Select Cluster Head (ND, Dav, Sav, VBP,

Threshold)

1. Initialize Empty Cluster Head Set: CH_set = {}

2. Calculate Weighted Values for Each Node:

 for each node in Network:

W_node = w1 * ND [node] + w2 * Dav[node] +_

 w3 * Sav[node] + w4 * VBP [node]

3. Normalize Weighted Values:

W_normalized = Normalize(W_node)

4. Identify High-Configured Nodes as Cluster Heads:

 for each normalized weight in W_normalized:

 if normalized weight > Threshold:

 Add corresponding node to CH_set

5. Return CH_set

The Threshold is a predefined threshold for

selecting high-configured nodes as cluster

heads.The Normalize function scales the weighted

International Journal on Applications in Engineering and Technology

Volume 10: Issue 2 : May 2024, pp 16 –22 www.aetsjournal.com ISSN (Online) : 2455 - 0523

--

20

values between 0 and 1.TheAlgorithm 2 builds upon

the previous step and focuses specifically on

selecting high-configured nodes as cluster heads

based on the normalized weighted values

3) Key Modification and Adaptation

Dynamic Key Modification

 Dynamically modify the cryptographic keys to

adapt to changes in the network environment.

 Adaptive Key Renewal

o Implement adaptive key renewal processes to

enhance the security of the network.

The pseudocode for step 3 is given in Algorithm

4.This pseudocode provides a structure for the

dynamic key modification process and introduces

adaptive key renewal based on network dynamics.

Algorithm 4: Key Modification and Adaptive Renewal

Input:

- Current Key: K_i

- Previous Key: K_{i-1}

- Network Dynamics Information

- Security Parameters

Output:

- Updated Key: K_i

Parameters:

- Key Renewal Threshold: Renewal_Threshold

- Adaptive Renewal Function: Renewal_Function()

Function: Modify and Renew Key(K_{i-1}, K_i, Network

Dynamics)

1. Perform Dynamic Key Modification:

 - Implement a secure dynamic modification function based

on cryptographic principles.

 - Example: K_i = Cryptographic_Modification(K_{i-1})

2. Check for Adaptive Key Renewal:

 IfRenewal_Function(Network Dynamics)

>Renewal_Threshold:

 - Implement Adaptive Key Renewal Mechanism:

K_i = Renewal_Mechanism(K_{i-1}, Network Dynamics)

3. Return K_i

4) Security Enhancement Mechanisms

Key Compromise Mitigation

 Introduce mechanisms to mitigate the

impact of key compromises, preventing attackers

from exploiting compromised keys.

Mitigated_Key=Mitigation_Mechanism(Compromi

sed_Key)

Bidirectional Malicious Node Detection

 Employ bidirectional detection to identify and

eliminate malicious nodes from the network.

Detected_Malicious_Nodes=Bidirectional_Detecti

on(Network_State)

This pseudocode given in Algorithm 5 provides a

foundation for implementing security enhancement

mechanisms, focusing on mitigating the impact of

key compromises and detecting potentially

malicious nodes bidirectionally in the network.

Algorithm 5: Security Enhancement Mechanisms

Input:

- Compromised Key: Compromised_Key

- Network State: Current Network State

Output:

- Mitigated Key: Mitigated_Key

- Detected Malicious Nodes: List of Detected Malicious

Nodes

Parameters:

- Threshold for Malicious Node Detection:

Detection_Threshold

Function: Key Compromise Mitigation(Compromised_Key)

1. Implement Key Compromise Mitigation Mechanism:

 - Use cryptographic techniques to mitigate the impact of a

compromised key.

 - Example: Mitigated_Key =

Cryptographic_Mitigation(Compromised_Key)

2. Return Mitigated_Key

Function: Bidirectional Malicious Node Detection(Current

Network State)

1. Initialize Empty List for Detected Malicious Nodes:

Detected_Malicious_Nodes = []

2. Perform Bidirectional Detection:

 for each node in Current Network State:

 if Is_Malicious(Node):

 Add Node to Detected_Malicious_Nodes

3. Return Detected_Malicious_Nodes

Function: Is_Malicious(Node)

1. Implement Malicious Node Detection Logic:

 - Use criteria such as abnormal behavior, communication

patterns, or known attack signatures.

 - Example: if Node's Behavior indicates malicious activity:

 return True

 else:

 return False

II. RESULTS AND DISCUSSIONS

In this section, we present and analyze the results

of our proposed Dynamic Key Management in IoT

Networks using the SpeckDKM. Comparative

evaluations with the CSDKT reveal notable insights

into various key performance parameters. In our

simulation environment, we precisely replicated a

realistic IoT network scenario using the Contiki-NG

simulator. Leveraging this powerful tool, we

International Journal on Applications in Engineering and Technology

Volume 10: Issue 2 : May 2024, pp 16 –22 www.aetsjournal.com ISSN (Online) : 2455 - 0523

--

21

emulated various network dynamics and conditions

to assess the performance of our proposed Dynamic

Key Management system—SpeckDKM. The

simulation provided a controlled yet representative

platform, enabling a thorough exploration of key

parameters such as energy consumption, memory

utilization, latency, communication overhead, and

computational overhead. This controlled

environment facilitated a comprehensive

understanding of SpeckDKM'sbehavior in

comparison to the established CSDKT, establishing

a robust foundation for our results and discussions.

These results illuminate the efficacy of SpeckDKM

in balancing enhanced security with minimal impact

on resource-constrained IoT environments, setting

the stage for a comprehensive exploration of our

findings. The parameters which are discussed in this

section are:

1. Energy Consumption: Analyze how

SpeckDKM's lightweight cryptographic operations

impact energy usage.

2. Memory Utilization: Assess how the

lightweight nature of the Speck algorithm

influences memory requirements.

3. Latency: Analyze how the dynamic key

management process affects communication delays.

4. Communication Overhead: Compare the

impact on the overall network traffic between

SpeckDKM and CSDKT.

5. Computational Overhead: Evaluate the

processing requirements for dynamic key

modification and adaptive renewal.

The Tables 1 to 4 provides the simulation results

for the above said parameters respectively.

Table 1: Energy Consumption

Simulation

Scenario
SpeckDKM CSDKT

Base Energy

Consumption
500 mJ 700 mJ

Energy consumed 520 mJ 730 mJ

Energy Savings 3.8% -3.7%

The Base Energy Consumption represents the

energy consumption in a baseline scenario without

dynamic key management.SpeckDKM shows a

3.8% reduction in energy consumption compared to

the baseline, suggesting improved energy

efficiency.CSDKT results in a 3.7% increase in

energy consumption compared to the baseline,

potentially due to higher computational demands or

increased communication overhead.

Table 2: Memory Utilization

Simulation Scenario SpeckDKM CSDKT

Base Memory

Utilization
120 KB 100 KB

Memory usage 132 KB 133KB

Additional Memory

Used
15 KB 30 KB

The Base Memory Utilization represents the

memory usage in a baseline scenario without

dynamic key management.SpeckDKM introduces

an estimated additional 15 KB of memory

compared to the baseline. While this represents a

moderate increase, it is crucial to note that the

Speck algorithm's lightweight nature contributes to

relatively efficient memory usage.CSDKT, on the

other hand, demonstrates a higher increase of 30

KB in memory compared to the baseline. This

potentially indicates higher memory overhead,

which may impact scalability in resource-

constrained environments.

Table 3: Latency

The Base Latency represents the latency in a

baseline scenario without dynamic key

management.SpeckDKM introduces an estimated

additional latency of 1 ms compared to the baseline.

This slight increase can be attributed to the dynamic

key modification and adaptive renewal

processes.CSDKT exhibits a higher latency increase

of 1.5 ms compared to the baseline, indicating

potentially higher communication delay. This may

be due to the complexity of the clustering

optimization process.

Table 4: Communication Overhead

Simulation Scenario SpeckDKM CSDKT

Base Communication

Overhead
884 bits 800 bits

Communication

Overhead
950 bits 1050 bits

Simulation

Scenario
SpeckDKM CSDKT

Base Latency 5 ms 4 ms

Average Latency 6 ms 6.5

Latency Increase 1ms 1.5ms

International Journal on Applications in Engineering and Technology

Volume 10: Issue 2 : May 2024, pp 16 –22 www.aetsjournal.com ISSN (Online) : 2455 - 0523

--

22

Additional

Communication

Overhead

50 bits 100 bits

Computation

Overhead
2 ms 3 ms

The Base Communication Overhead represents the

communication overhead in a baseline scenario

without dynamic key management, measured in

bits. Additional Communication Overhead indicates

the increase in communication overhead compared

to the baseline or between the two methods.

SpeckDKM introduces an additional

communication overhead of 50 bits, suggesting a

moderate increase in the amount of data transmitted.

This overhead is attributed to the dynamic key

modification and adaptive renewal

mechanisms.CSDKT exhibits a higher

communication overhead increase of 100 bits

compared to the baseline. This higher overhead may

be attributed to the clustering and key management

processes, potentially impacting network

scalability.CSDKT incurs a higher computational

overhead of 3 ms, potentially due to the complex

clustering optimization and key management

processes.

Overall, SpeckDKM demonstrates a balanced

trade-off between enhanced security through

dynamic key management and acceptable increases

in energy consumption, memory utilization, latency,

communication overhead, and computational

overhead.CSDKT, while providing secure dynamic

keying, exhibits higher increases in various

performance parameters, which may impact its

suitability for resource-constrained IoT

environments.

III. CONCLUSION

In conclusion, our proposed Dynamic Key

Management in IoT Networks, leveraging the

SpeckDKM, demonstrates promising outcomes in

the realm of lightweight and secure key

management. Comparative analyses against the

CSDKT showcase SpeckDKM'ssubtle balance

between security and resource efficiency in energy

consumption, memory utilization, latency,

communication overhead, and computational

overhead. These findings underscore

SpeckDKM'spotential as a robust solution for

securing IoT networks with constrained resources,

opening avenues for further exploration and

implementation in real-world scenarios.

REFERENCES

[1] F. Samiullah, M. L. Gan, S. Akleylek, and Y. Aun, ―Group Key

Management in Internet of Things: A Systematic Literature Review,‖
IEEE Access, vol. 11, 2023, doi: 10.1109/ACCESS.2023.3298024.

[2] N. A. Khan, A. Awang, and S. A. A. Karim, ―Security in Internet of
Things: A Review,‖ IEEE Access, vol. 10. 2022. doi:

10.1109/ACCESS.2022.3209355.

[3] V. Kumar, N. Malik, G. Dhiman, and T. K. Lohani, ―Scalable and
Storage Efficient Dynamic Key Management Scheme for Wireless

Sensor Network,‖ WirelCommun Mob Comput, vol. 2021, 2021, doi:

10.1155/2021/5512879.

[4] V. T. Kesavan, ―Scalable and Secure Dynamic Key Management

Framework for Static and Mobile Wireless Sensor Networks,‖
KALASALINGAM UNIVERSITY, 2015.

[5] H. Y. Lin and M. Y. Hsieh, ―A dynamic key management and secure
data transfer based on m-tree structure with multi-level security

framework for Internet of vehicles,‖ Conn Sci, vol. 34, no. 1, 2022, doi:

10.1080/09540091.2022.2045254.

[6] A. Lei, H. Cruickshank, Y. Cao, P. Asuquo, C. P. A. Ogah, and Z. Sun,

―Blockchain-Based Dynamic Key Management for Heterogeneous
Intelligent Transportation Systems,‖ IEEE Internet Things J, vol. 4, no.

6, 2017, doi: 10.1109/JIOT.2017.2740569.

[7] Y. Zhou, H. Tan, and K. C. A. A. Iroshan, ―A secure authentication and
key agreement scheme with dynamic management for vehicular

networks,‖ Conn Sci, vol. 35, no. 1, Dec. 2023, doi:

10.1080/09540091.2023.2176825.

[8] A. Perriget al., ―SPINS: Security Protocols for Sensor Networks

SPINS : Security Protocols for Sensor Networks,‖ Wireless Networks,
vol. 8, no. September, 2009.

[9] S. Zhu, S. Setia, and S. Jajodia, ―LEAP+: Efficient security
mechanisms for large-scale distributed sensor networks,‖ ACM Trans

Sens Netw, vol. 2, no. 4, 2006, doi: 10.1145/1218556.1218559.

[10] M. Rana, Q. Mamun, and R. Islam, ―Enhancing IoT Security: An
Innovative Key Management System for Lightweight Block Ciphers,‖

Sensors, vol. 23, no. 18, 2023, doi: 10.3390/s23187678.

[11] V. T. Kesavan and S. Radhakrishnan, ―Cluster based secure dynamic
keying technique for heterogeneous mobile Wireless Sensor

Networks,‖ China Communications, vol. 13, no. 6, pp. 178–194, 2016,
doi: 10.1109/CC.2016.7513213.

[12] S. Azimi, C. Pahl, and M. H. Shirvani, ―Particle swarm optimization for
performance management in multi-cluster IoT edge architectures,‖ in

CLOSER 2020 - Proceedings of the 10th International Conference on

Cloud Computing and Services Science, 2020. doi:
10.5220/0009391203280337.

[13] T. A. Al-Janabi and H. S. Al-Raweshidy, ―Optimised clustering
algorithm-based centralised architecture for load balancing in IoT

network,‖ in Proceedings of the International Symposium on Wireless

Communication Systems, 2017. doi: 10.1109/ISWCS.2017.8108123.

[14] C. Iwendi, P. K. R. Maddikunta, T. R. Gadekallu, K. Lakshmanna, A.

K. Bashir, and M. J. Piran, ―A metaheuristic optimization approach for

energy efficiency in the IoT networks,‖ SoftwPract Exp, vol. 51, no. 12,
2021, doi: 10.1002/spe.2797.

[15] M. Alazab, K. Lakshmanna, T. R. G, Q. V. Pham, and P. K. Reddy
Maddikunta, ―Multi-objective cluster head selection using fitness

averaged rider optimization algorithm for IoT networks in smart cities,‖

Sustainable Energy Technologies and Assessments, vol. 43, 2021, doi:
10.1016/j.seta.2020.100973.

[16] R. A. F. Lustro, A. M. Sison, and R. P. Medina, ―Performance analysis

of enhanced speck algorithm,‖ in ACM International Conference

Proceeding Series, 2018. doi: 10.1145/3288155.3288196.

