
International Journal on Applications in Information and Communication Engineering  

Volume 2: Issue 2: February 2016, pp 53-58. www.aetsjournal.com                                                       ISSN (Online) : 2394-6237 

----------------------------------------------------------------------------------------------------------------------------- ------------------------------ 

53 

 

 

Abstract—    Resource Management is an important issue in 

cloud environment. The emerging cloud computing paradigm 

provides administrators and IT organizations with tremendous 

freedom to dynamically migrate virtualized computing services 

between physical servers in cloud data centers. Virtualization and 

VM migration capabilities enable the data center to consolidate their 

computing services and use minimal number of physical servers. VM 

migration offers great benefits such as load balancing, server 

consolidation, online maintenance and proactive fault tolerance. 

Cloud computing offers utility-oriented IT services to users 

worldwide. Based on a pay-as-you-go model, it enables hosting of 

pervasive applications from consumer, scientific, and business 

domains. However, data centers hosting Cloud applications consume 

huge amounts of electrical energy, contributing to high operational 

costs and carbon footprints to the environment. Therefore, to need 

Green Cloud computing solutions that can not only minimize 

operational costs but also reduce the environmental impact. So that to 

define an architectural framework and principles for energy-efficient 

cloud computing. Based on this architecture, to present the vision, 

open research challenges and resource provisioning and allocation 

algorithms for energy-efficient management of cloud computing 

environments. We Introduce MILP(Mixed Integer Linear 

Programming) for joint optimization of over all network processing 

cost. 

 

Index Terms — Big Data, Load balance, distributed file 

systems, cloud computing 

I. INTRODUCTION 

LOUD  Computing (or  cloud for  short)  is  a  

compelling technology. In clouds,  clients  can 

dynamically allocate their  resources on-demand  

without  sophisticated deployment  and  management of 

resources. Key enabling technologies   for  clouds   

include  the   MapReduce programming paradigm [1], 

distributed file systems (e.g., [2], [3]), virtualization 

(e.g., [4], [5]), and  so forth.  These  techniques emphasize  

scalability, so  clouds  (e.g., [6]) can  be  large  in scale,  

and  comprising entities  can  arbitrarily fail and  join 

while  maintaining system reliability. 

Distributed file systems are key building blocks for 

cloud computing applications based  on the MapReduce 

programming  paradigm. In such  file systems, nodes  

simultaneously serve  computing and  storage functions; 
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a file is partitioned into a number of chunks allocated in 

distinct nodes. 

MapReduce tasks  can  be  performed in  parallel over  

the nodes.  For example, consider a wordcount 

application that counts  the  number of distinct words 

and  the  frequency of each  unique word in a large  file. 

In such  an application, a cloud  partitions the  file into  a 

large  number of disjointed and  fixed size  pieces  (or  file 

chunks) and  assigns  them  to different  cloud   storage  

nodes   (i.e.,  chunkservers).  Each storage    node   (or   

node  for   short)   then   calculates  the frequency of 

each  unique word by  scanning and  parsing its local 

file chunks. 

In such  a distributed file system, the  load  of a node  

is typically proportional to the number of file chunks the 

node possesses [3]. Because  the files in a cloud  can be 

arbitrarily created, deleted,  and   appended,  and   nodes   

can  be  upgraded, replaced and  added in the  file 

system [7], the  file chunks are not distributed as 

uniformly as possible  among the  nodes.  Load  balance  

among storage nodes  is a critical function in clouds.  In 

a load balanced cloud,  the  resources can be well utilized 

and  provisioned, maximizing the performance of 

MapReduce based applications. 

State of the art distributed file systems (e.g., Google 

GFS [2] and  Hadoop HDFS [3]) in clouds  rely on central  

nodes  to manage the metadata information of the file 

systems and  to balance  the loads  of storage nodes  based  

on that  metadata. The  centralized  approach  simplifies 

the  design and   implementation of a distributed file 

system. However, recent experience (e.g.,  [8]) concludes 

that  when the  number  of storage  nodes,   the   number  

of  files  and   the   number  of accesses  to files increase  

linearly,  the central  nodes  (e.g., the master in Google 

GFS) become a performance bottleneck, as they  are  

unable to  accommodate a  large  number of  file 

accesses  due  to clients  and  MapReduce applications. 

Thus, depending on the central  nodes  to tackle the load 

imbalance problem exacerbate their  heavy  loads.  Even 

with  the  latest development in distributed file systems 

the  central  nodes may  still  be overloaded. For example, 

HDFS federation [9] suggests an  architecture with  

multiple namenodes (i.e., the nodes  managing the  

metadata information). Its file system namespace  is  

statically  and   manually  partitioned  to  a number of 

namenodes. However, as the  workload experienced   by  
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the  namenodes may  change   over  time  and  no 

adaptive workload consolidation and/or migration 

scheme is offered to balance  the loads among the 

namenodes, any of the namenodes may  become  the 

performance bottleneck. 

In  this  paper, we  are  interested in  studying the  

load rebalancing  problem in  distributed file  systems 

specialized for  large-scale, dynamic  and   data-intensive 

clouds.   (The terms  “rebalance” and  “balance” are inter 

changeable in this paper.) Such a large-scale cloud  has 

hundreds or thousands of nodes  (and  may  reach  tens  of 

thousands in the  future). Our  objective  is to allocate  the 

chunks of files as uniformly as possible  among the nodes  

such that no node  manages an excessive   number  of  

chunks.  Additionally,  we   aim   to reduce network 

traffic (or movement cost) caused by rebalancing  the  

loads   of  nodes   as  much   as  possible   to maximize the  

network bandwidth available to normal applications. 

Moreover, as  failure  is  the  norm,  nodes  are newly  

added to sustain the overall  system performance [2], [3],  

resulting  in  the   heterogeneity  of  nodes.   Exploiting 

capable nodes  to improve the system performance is, 

thus, demanded. 

Specifically,  in this study, we suggest offloading the 

load rebalancing task  to  storage nodes   by  having the  

storage nodes   balance   their  loads  spontaneously. This  

eliminates the  dependence on  central   nodes.   The  

storage nodes   are structured as a network based  on 

distributed hash tables (DHTs),  e.g.,  [10], [11], [12]; 

discovering a  file  chunk   can simply   refer  to  rapid key  

lookup in  DHTs,  given  that  a unique handle (or 

identifier) is assigned to each  file chunk. DHTs   enable   

nodes   to  self-organize  and   -repair  while constantly 

offering  lookup functionality in node  dynamism, 

simplifying the system provision and  management. 

In summary, our  contributions are threefold as 

follows: 

. By leveraging DHTs,  we present a load  

rebalancing algorithm for  distributing file chunks as  

uniformly as  possible   and  minimizing the  movement 

cost  as much  as  possible. Particularly, our  proposed  

algo- rithm   operates in  a  distributed  manner in  

which nodes  perform their  load-balancing tasks  

indepen- dently without synchronization or global 

knowledge regarding the system. 

. Load-balancing  algorithms  based   on  DHTs   have 

been  extensively studied (e.g.,  [13], [14], [15], [16], 

[17], [18], [19], [20], [21], [22]). However, most existing  

solutions are designed without  considering both  

movement cost  and   node   heterogeneity and may  

introduce significant maintenance network traffic  to  

the  DHTs.  In  contrast, our  proposal not only takes  

advantage of physical network locality  in the  

reallocation of file chunks to reduce the  move- ment  

cost but also exploits  capable nodes  to improve the  

overall  system performance. Additionally, our 

algorithm reduces algorithmic overhead introduced to 

the DHTs  as much  as possible. 

. Our  proposal is assessed through computer 

simula- tions.  The simulation results indicate that  

although each  node  performs our  load  rebalancing 

algorithm independently without acquiring global  

knowledge, our proposal is comparable with  the 

centralized approach in Hadoop HDFS [3] and  

remarkably outperforms  the   competing  distributed  

algorithm in [14] in terms  of load  imbalance factor, 

movement cost,  and   algorithmic overhead. 

Additionally, our load-balancing algorithm exhibits  a 

fast convergence rate.  We  derive   analytical models  to  

validate the efficiency and  effectiveness of our design. 

Moreover, we have  implemented our  load-balancing 

algorithm in  HDFS   and   investigated  its  performance  

in   a cluster  environment. 

The remainder of the  paper is organized as follows:  

the load rebalancing problem is formally specified in 

Section 2. Our  load-balancing algorithm is presented in 

Section 3. We evaluate our  proposal through computer 

simulations and discuss the simulation results in Section 

4. In Section 5, the performance of  our  proposal is  

further investigated in  a cluster  environment. Our 

study is summarized in Section 6. Due  to space  

limitation, we  defer  the  extensive discussion of related 

works  in the  appendix, which  can  be found on the 

Computer Society Digital Library  at http://doi. 

ieeecomputersociety.org/10.1109/TPDS.2012.196. 

II. LOAD REBALANCING  PROBLEM 

We consider a large-scale distributed file system 

consisting of a set of chunkservers V  in a cloud,  where the 

cardinality of V  is jV j ¼ n. Typically,  n can be 1,000, 

10,000, or more.  In the   system,    a   number  of   files   

are   stored  in   the   n chunkservers. First, let us denote 

the set of files as F . Each file f 2 F  is partitioned into  a 

number of disjointed, fixed- size  chunks denoted by  Cf 

For example, each  chunk  has the same  size, 64 Mbytes,  

in Hadoop HDFS [3]. Second,  the load  of  a  chunkserver 

is  proportional to  the  number  of chunks hosted by the  

server  [3]. Third,  node  failure  is the norm  in  such  a 

distributed system, and  the  chunkservers may   be  

upgraded,  replaced  and   added  in  the   system. 

Finally,  the  files  in  F  may  be  arbitrarily created, 

deleted, and   appended. The  net  effect  results in  file  

chunks not being   uniformly distributed  to  the  

chunkservers.  Fig.  1 illustrates an example of the load 

rebalancing problem with the  assumption that   the  

chunkservers are  homogeneous and  have  the same  

capacity. 

Our  objective  in  the  current study is to  design a  

load rebalancing algorithm to reallocate file chunks such 

that the chunks can  be  distributed to  the  system as  

uniformly as possible   while   reducing the  movement 

cost  as  much   as possible. Here,  the  movement cost is 
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defined as the  number of chunks migrated to balance  

the  loads  of the  chunkser- vers.   Let  A  be  the   ideal   

number  of  chunks  that   any chunkserver i 2 V  is 

required to manage in a system-wide load-balanced 

state,  that  is where Li denotes the load of node  i (i.e., 

the number of file chunks hosted by i) and  k  k 

represents the absolute value function. Note that 

“chunkservers” and  “nodes” are interchangeable in this  

paper. 

 
Fig. 1. An example illustrates the load rebalancing problem,where 

(a) an initial distribution of chunks of six files f1 , f2 , f3 , f4 , f5 , 

and f6 in three nodes N1 , N2 , N3. 

 
(b) files f2 and f5 are deleted, 

 

 
(c) f6 is appended, and 

(d) node N4  joins. The nodes in (b), (c), and (d) are in a load-

imbalanced state. 

Theorem 1. The load rebalancing problem is N P-hard. 

Proof.  By restriction, an  instance of the  decision  

version of the  load  rebalancing problem is  the  

knapsack problem [23]. That  is, consider any  node  i 2 V . 

i seeks  to store  a subset  of the  file chunks in F  such  

that  the  number  of chunks hosted by i is not more  than  

A, and  the “value” of the chunks hosted is at least   , 

which  is defined as the inverse of the  sum  of the  

movement cost caused by the migrated chunks.                                                           

tu 

To  simplify   the  discussion, we  first  assume a  

homo- geneous environment, where migrating a file 

chunk between any  two  nodes  takes  a  unit  movement 

cost  and each  chunkserver has  the  identical storage 

capacity. How- ever,  we will later  deal  with  the 

practical considerations of node  capacity  heterogeneity 

and  movement 

successor of chunkserver n  as  chunkserver 1. In a 

typical DHT, a chunkserver i hosts  the file chunks 

whose  handles the chunks whose  handles are in ðn ; n . 

To discover a file chunk,  the  DHT  lookup operation 

is performed. In  most  DHTs,  the  average number of  

nodes visited  for a lookup is Oðlog nÞ [10], [11] if each 

chunkserver i maintains log2 n neighbors, that  is, nodes  

i þ 2k mod n for     k ¼ 0; 1; 2; . . ., n Log 2    1 Log 2 

Among the   n  neighbors the one  i þ 20 is  the  

successor of  i.  To  look  up  a  file  with  l cost  based  on 

chunk  migration in physical network locality. 

III.      OUR  PROPOSAL 

Table  1 in  Appendix B, which   is  available in  the  

online supplemental material, summarizes the notations 

frequently used  in the following discussions for ease of 

reference. 

A. Architecture 

The chunkservers in our  proposal are organized as a 

DHT network; that is, each chunkserver implements a 

DHT protocol such  as  Chord [10] or  Pastry  [11]. A  

file  in  the system is partitioned into  a number of 

fixed-size  chunks, and   “each”   chunk   has  a  unique 

chunk  handle (or  chunk identifier) named with a globally  

known hash function such as SHA1 

[24]. The hash  function returns a unique identifier for 

a given  file’s pathname string  and  a chunk  index.  For 

example, the identifiers of the first and  third chunks of 

file “/user/tom/tmp/a.log” are, respectively, 

SHA1(/ user/tom/tmp/a.log, 0) and 

SHA1(/user/tom/ tmp/a.log, 2). Each  

chunkserver also  has  a unique  ID. We   represent  the   

IDs   of  the   chunkservers  in   V    by chunks, l lookups 

are issued. 

DHTs are used  in our proposal for the following 

reasons: 

. The chunkservers self-configure and  self-heal  in 

our proposal because  of their  arrivals, departures, and 

failures,   simplifying  the  system provisioning and 

management. Specifically,   typical   DHTs  guarantee that  

if a node  leaves,  then  its locally  hosted chunks are 

reliably  migrated to its successor;  if a node  joins, then  it 

allocates  the  chunks whose  IDs immediately precede  

the   joining   node   from   its   successor  to manage. Our  

proposal heavily  depends on the node arrival  and   

departure  operations  to  migrate  file chunks among 

nodes.  Interested readers are referred to  [10], [11] for  the  

details  of the  self-management technique in DHTs. 

. While   lookups  take   a  modest  delay   by   

visiting Oðlog nÞ nodes  in a typical  DHT, the lookup 

latency can be reduced because  discovering the l chunks 

of a file can be performed in parallel. On the other  hand, 

our  proposal is independent of the  DHT  protocols. To 

further reduce the lookup latency,  we can adopt state-of-
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the-art DHTs  such  as Amazon’s Dynamo in [12] that  

offer one-hop lookup delay. 

. The  DHT  network is  transparent to  the  metadata 

management in  our  proposal. While  the  DHT  net- 

work  specifies  the locations  of chunks, our  proposal can 

be integrated with  existing  large-scale distribu- ted  file 

systems, e.g.,  Google  GFS [2] and  Hadoop HDFS   [3],  

in   which   a  centralized  master  node manages the  

namespace of the  file system and  the mapping of file 

chunks to storage nodes.  Specifically, to incorporate our  

proposal with  the master node  in GFS, each  

chunkserver  periodically piggybacks its locally hosted 

chunks’  information to the master in a heartbeat 

message [2] so that  the  master can gather n ; n ; n ; . .  ; n 

;  for   short,  denote  the   n   chunkservers  as the 

locations  of chunks in the system. 

B. Load Rebalancing Algorithm 

1) Overview 

A  large-scale distributed  file  system is  in  a  load-

balanced state if each  chunkserver hosts  no more  than  A 

chunks. In our   proposed  algorithm,  each   chunkserver  

node   i  first. Low movement cost.  As node  i is the  

lightest  node among all chunkservers, the number of 

chunks migrate. 

2) MILP  Algorithm. 

An  integer programming  problem is a mathematical  

optimization or feasibility program in which some or all of the 

variables are restricted to be integers. In many settings the 

term refers to integer linear programming (ILP), in which the 

objective function and the constraints (other than the integer 

constraints) are linear. 

A mixed-integer linear program is a problem with 

 Linear objective function, f
T
x, where f is a column vector 

of constants, and x is the column vector of unknowns 

 Bounds and linear constraints, but no nonlinear 

constraints (for definitions, 

 Restrictions on some components of x to have integer 

values 

In mathematical terms, given vectors f, lb, and ub, 

matrices A and Aeq, corresponding vectors b and beq, and a 

set of indices intcon, find a vector x to solve 

 

 

Fig.3. Effect of hetrogenity 

Replica   management in  distributed  systems has  

been extensively discussed in the literature. Given any 

file chunk, our proposal implements the directory-based 

scheme in [32] to trace the locations  of k replicas for the 

file chunk.  Precisely, the  file chunk  is associated with  

k    1 pointers that  keep track of k    1 randomly selected  

nodes  storing the replicas. 

IV. VSIMULATION 

A. Simulation Setup and Workloads 

The  performance of  our  algorithm is  evaluated 

through computer simulations. Our  simulator is 

implemented with Pthreads. In  the  simulations, we  

carry  out  our  proposal based  on the Chord DHT 

protocol [10] and the gossip-based aggregation protocol 

in [26] and  [27]. In the default setting, the  number of 

nodes  in  the  system is n ¼ 1;000, and  the number of  

file  chunks is  m ¼ 10;000. To  the  best  of  our 

knowledge, there  are  no representative realistic  

workloads available. Thus, the number of file chunks 

initially  hosted by a node  in  our  simulations follows  

the  geometric distribu- tion,  enabling stress  tests  as  

suggested in  [15] for  various load  rebalancing 

algorithms. Fig. 3 shows  the  cumulative distribution 

functions (CDF) of the file chunks in the simulations, 

where workloads A,  B, C,  and   D  represent results 

indicate that  centralized matching introduces 

much  less message overhead than  distributed 

match- ing and   our   proposal,  as  each  node   in  

centralized matching simply  informs the 

centralized load  balancer of its  load  and  capacity. On  

the  contrary, in  distributed matching and our 

proposal, each node probes a number of existing  nodes  

in  the  system, and  may  then  reallocate its load  

from/to the  probed nodes,   introducing more   mes- 

sages.  We also  see that  our  proposal clearly  produces 

less message overhead than  distributed 

computing. Speci- fically,  any  node  i in  our  proposal 

gathers partial system knowledge from  its neighbors 

[26], [27], whereas node  i in distributed matching 

takes Oðlog nÞ messages to probe a randomly selected  

node  in the network. 
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Fig.4.Message over head 

 

Fig..5.The Breakdown of WMC 

physically  closest   node   to  pair   with,   leading  a  

shorter physical distance  for  migrating a  chunk.   This  

operation effectively  differentiates nodes   in  different 

network  locations,  and  considerably reduces the WMC. 

 
Fig 6. The experimental environment and performance 

results, where  (a) shows  the setup of the experimental 

environment, (b) indicates the time elapsed of performing the 

HDFS load balancer and our proposal, and (c) and (d) show the 

distributions of file chunks for the HDFS load balancer and our 

proposal, respectively. 

V. IMPLEMENTATION AND MEASUREMENT 

A.   Experimental Environment Setup 

We  have   implemented  our   proposal  in  Hadoop  

HDFS 0.21.0, and  assessed our  implementation against 

the  load balancer in  HDFS.  Our   implementation is  

demonstrated through a small-scale cluster  

environment (Fig. 11a) consisting of a single, 

dedicated namenode and  25 datanodes, each  with  

Ubuntu 10.10 [34]. Specifically,  the namenode  is  

equipped  with   Intel   Core   2  Duo   E7400 processor 

and  3 Gbytes  RAM. As the number of file chunks in our  

experimental environment is small,  the RAM size of the  

namenode is  sufficient to  cache  the  entire  namenode 

process  and  the metadata information, including the 

directories and  the locations  of file chunks. 

In the experimental environment, a number of clients 

are established to issue  requests to the namenode. The 

requests include commands to create directories with  

randomly designated names, to remove directories 

arbitrarily chosen, etc.  Due  to  the  scarce  resources in  

our  environment, we have  deployed 4 clients  to 

generate requests to the  name- node.   However,  this   

cannot   overload  the   namenode  to mimic  the situation 

as reported in [8]. To emulate the load of the namenode 

in a production system and  investigate the effect of the 

namenode’s load on the performance of a load- 

balancing algorithm,  we  additionally limit  the  

processor cycles available to the namenode by varying 

the maximum processor utilization, denoted by M, 

available to the namenode up  to M ¼ 1%; 2%; 8%; 16%; 

32%; 64%; 99%. The lower   processor  availability  to  the  

namenode  represents the  less  CPU  cycles  that   the  

namenode  can  allocate   to handle the clients’ requests 

and  to talk to the load balancer. 

As data center networks proposed recently  (e.g., [29]) 

can offer   a  fully   bisection   bandwidth,  the   total   

number  of chunks scattered in  the  file system in  our  

experiments  is limited to  256  such   that  the  network 

bandwidth  in  our environment (i.e., all nodes  are chunk  

in the experiments is set to 16 Mbytes.  Compared to each 

experimental run requiring 

20-60 minutes, transferring these chunks takes no more 

than 

100         328 seconds     5:5 minutes   in   case   the   

network bandwidth is  fully  utilized. The  initial  

placement of  the 

256 file chunks follows  the geometric distribution as 

discussed in Section 4. 

For each experimental run, we quantity the time elapsed 

to complete the load-balancing algorithms, including the 

HDFS load  balancer and  our  proposal. We perform 20 

runs  for a vExperimental Results 

We demonstrate in Fig. 11 the experimental results. 

Fig. 11b shows   the  time  required for  performing the  

HDFS  load balancer and  our  proposal. Our  proposal 

clearly  outper- forms   the  HDFS  load   balancer.  When   

the  namenode  is heavily  loaded (i.e., small  M’s), our  

proposal remarkably performs better  than  the HDFS 

load  balancer. For example, if M ¼ 1%, the  HDFS  load  

balancer takes  approximately 60 minutes to balance  the  

loads  of datanodes. By contrast, our   proposal  takes   

nearly   20  minutes  in   the   case   of M ¼ 1%. 

Specifically,  unlike  the  HDFS load  balancer, our 

proposal is independent of the load  of the namenode.In 

Figs. 11c and  11d, we further show  the distributions of 

chunks after  performing the  HDFS  load  balancer and  

our proposal. As there are 256 file chunks and 25 

datanodes, the ideal number of chunks that each 

datanode needs  to host.   Due   to   space   limitation,  

we   only   offer   the experimental results for M ¼ 1 

and  the  results for M ¼ 1 conclude the  similar.  Figs.  

11c and  11d  indicate that  our proposal is  comparable 

to  the  HDFS  load  balancer, and balances the loads  of 

datanodes, effectively. 
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VI. SUMMARY 

A  novel   load-balancing algorithm  to  deal  with   the  

load rebalancing problem in  large-scale, dynamic, and  

distrib- uted  file systems in clouds  has been presented in 

this paper. Our  proposal strives   to  balance   the  loads   

of  nodes   and reduce the demanded movement cost as 

much  as possible, while  taking   advantage of  physical 

network locality  and node  heterogeneity. In  the  

absence   of  representative real workloads investigated 

the  performance of  our  proposal and   com pared it 

against competing algorithms through synthesized 

probabilistic  distributions  of  file  chunks.  The   

synthesis workloads  stress   test   the   load-balancing  

algorithms  by creating a few  storage nodes  that  are  

heavily  loaded. The computer  simulation  results  are  

encouraging, indicating that   our   proposed  algorithm  

performs  very   well.   Our proposal is comparable to the  

centralized algorithm in the Hadoop HDFS  production 

system and   dramatically out- performs the  competing 

distributed  algorithm in  [14]  in terms  of load 

imbalance factor, movement cost, and algorithmic 

overhead. Particularly, our load-balancing algorithm 

exhibits  a  fast  convergence rate.  The  efficiency and   

effectiveness  of  our   design  are   further  validated 

by  analytical models  and   a  real  implementation with   

a small scale cluster  environment. 
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