
International Journal on Applications in Information and Communication Engineering

Volume 2: Issue 2: February 2016, pp 53-58. www.aetsjournal.com ISSN (Online) : 2394-6237

--- ------------------------------

53



Abstract— Resource Management is an important issue in

cloud environment. The emerging cloud computing paradigm

provides administrators and IT organizations with tremendous

freedom to dynamically migrate virtualized computing services

between physical servers in cloud data centers. Virtualization and

VM migration capabilities enable the data center to consolidate their

computing services and use minimal number of physical servers. VM

migration offers great benefits such as load balancing, server

consolidation, online maintenance and proactive fault tolerance.

Cloud computing offers utility-oriented IT services to users

worldwide. Based on a pay-as-you-go model, it enables hosting of

pervasive applications from consumer, scientific, and business

domains. However, data centers hosting Cloud applications consume

huge amounts of electrical energy, contributing to high operational

costs and carbon footprints to the environment. Therefore, to need

Green Cloud computing solutions that can not only minimize

operational costs but also reduce the environmental impact. So that to

define an architectural framework and principles for energy-efficient

cloud computing. Based on this architecture, to present the vision,

open research challenges and resource provisioning and allocation

algorithms for energy-efficient management of cloud computing

environments. We Introduce MILP(Mixed Integer Linear

Programming) for joint optimization of over all network processing

cost.

Index Terms — Big Data, Load balance, distributed file

systems, cloud computing

I. INTRODUCTION

LOUD Computing (or cloud for short) is a

compelling technology. In clouds, clients can

dynamically allocate their resources on-demand

without sophisticated deployment and management of

resources. Key enabling technologies for clouds

include the MapReduce programming paradigm [1],

distributed file systems (e.g., [2], [3]), virtualization

(e.g., [4], [5]), and so forth. These techniques emphasize

scalability, so clouds (e.g., [6]) can be large in scale,

and comprising entities can arbitrarily fail and join

while maintaining system reliability.

Distributed file systems are key building blocks for

cloud computing applications based on the MapReduce

programming paradigm. In such file systems, nodes

simultaneously serve computing and storage functions;

J.Litiya M.E (Cse) Sree Sowdambika College Of Engineering,

Aruppukottai, Tamilnadu, India.(Email : lidi421@gmail.com)

 M.Senthilkumar Asst Prof, Dept Of Computer Science ,Sree Sowdambika

College Of Engineering, Aruppukottai, Tamilnadu, India.
(Email : rmsenthik@gmail.com)

a file is partitioned into a number of chunks allocated in

distinct nodes.

MapReduce tasks can be performed in parallel over

the nodes. For example, consider a wordcount

application that counts the number of distinct words

and the frequency of each unique word in a large file.

In such an application, a cloud partitions the file into a

large number of disjointed and fixed size pieces (or file

chunks) and assigns them to different cloud storage

nodes (i.e., chunkservers). Each storage node (or

node for short) then calculates the frequency of

each unique word by scanning and parsing its local

file chunks.

In such a distributed file system, the load of a node

is typically proportional to the number of file chunks the

node possesses [3]. Because the files in a cloud can be

arbitrarily created, deleted, and appended, and nodes

can be upgraded, replaced and added in the file

system [7], the file chunks are not distributed as

uniformly as possible among the nodes. Load balance

among storage nodes is a critical function in clouds. In

a load balanced cloud, the resources can be well utilized

and provisioned, maximizing the performance of

MapReduce based applications.

State of the art distributed file systems (e.g., Google

GFS [2] and Hadoop HDFS [3]) in clouds rely on central

nodes to manage the metadata information of the file

systems and to balance the loads of storage nodes based

on that metadata. The centralized approach simplifies

the design and implementation of a distributed file

system. However, recent experience (e.g., [8]) concludes

that when the number of storage nodes, the number

of files and the number of accesses to files increase

linearly, the central nodes (e.g., the master in Google

GFS) become a performance bottleneck, as they are

unable to accommodate a large number of file

accesses due to clients and MapReduce applications.

Thus, depending on the central nodes to tackle the load

imbalance problem exacerbate their heavy loads. Even

with the latest development in distributed file systems

the central nodes may still be overloaded. For example,

HDFS federation [9] suggests an architecture with

multiple namenodes (i.e., the nodes managing the

metadata information). Its file system namespace is

statically and manually partitioned to a number of

namenodes. However, as the workload experienced by

 J.Litiya , M.Senthilkumar

Energy Minimization of Big Data

Processing for Distributed File Systems in

Clouds

C

International Journal on Applications in Information and Communication Engineering

Volume 2: Issue 2: February 2016, pp 53-58. www.aetsjournal.com ISSN (Online) : 2394-6237

--- ------------------------------

54

the namenodes may change over time and no

adaptive workload consolidation and/or migration

scheme is offered to balance the loads among the

namenodes, any of the namenodes may become the

performance bottleneck.

In this paper, we are interested in studying the

load rebalancing problem in distributed file systems

specialized for large-scale, dynamic and data-intensive

clouds. (The terms “rebalance” and “balance” are inter

changeable in this paper.) Such a large-scale cloud has

hundreds or thousands of nodes (and may reach tens of

thousands in the future). Our objective is to allocate the

chunks of files as uniformly as possible among the nodes

such that no node manages an excessive number of

chunks. Additionally, we aim to reduce network

traffic (or movement cost) caused by rebalancing the

loads of nodes as much as possible to maximize the

network bandwidth available to normal applications.

Moreover, as failure is the norm, nodes are newly

added to sustain the overall system performance [2], [3],

resulting in the heterogeneity of nodes. Exploiting

capable nodes to improve the system performance is,

thus, demanded.

Specifically, in this study, we suggest offloading the

load rebalancing task to storage nodes by having the

storage nodes balance their loads spontaneously. This

eliminates the dependence on central nodes. The

storage nodes are structured as a network based on

distributed hash tables (DHTs), e.g., [10], [11], [12];

discovering a file chunk can simply refer to rapid key

lookup in DHTs, given that a unique handle (or

identifier) is assigned to each file chunk. DHTs enable

nodes to self-organize and -repair while constantly

offering lookup functionality in node dynamism,

simplifying the system provision and management.

In summary, our contributions are threefold as

follows:

. By leveraging DHTs, we present a load

rebalancing algorithm for distributing file chunks as

uniformly as possible and minimizing the movement

cost as much as possible. Particularly, our proposed

algo- rithm operates in a distributed manner in

which nodes perform their load-balancing tasks

indepen- dently without synchronization or global

knowledge regarding the system.

. Load-balancing algorithms based on DHTs have

been extensively studied (e.g., [13], [14], [15], [16],

[17], [18], [19], [20], [21], [22]). However, most existing

solutions are designed without considering both

movement cost and node heterogeneity and may

introduce significant maintenance network traffic to

the DHTs. In contrast, our proposal not only takes

advantage of physical network locality in the

reallocation of file chunks to reduce the move- ment

cost but also exploits capable nodes to improve the

overall system performance. Additionally, our

algorithm reduces algorithmic overhead introduced to

the DHTs as much as possible.

. Our proposal is assessed through computer

simula- tions. The simulation results indicate that

although each node performs our load rebalancing

algorithm independently without acquiring global

knowledge, our proposal is comparable with the

centralized approach in Hadoop HDFS [3] and

remarkably outperforms the competing distributed

algorithm in [14] in terms of load imbalance factor,

movement cost, and algorithmic overhead.

Additionally, our load-balancing algorithm exhibits a

fast convergence rate. We derive analytical models to

validate the efficiency and effectiveness of our design.

Moreover, we have implemented our load-balancing

algorithm in HDFS and investigated its performance

in a cluster environment.

The remainder of the paper is organized as follows:

the load rebalancing problem is formally specified in

Section 2. Our load-balancing algorithm is presented in

Section 3. We evaluate our proposal through computer

simulations and discuss the simulation results in Section

4. In Section 5, the performance of our proposal is

further investigated in a cluster environment. Our

study is summarized in Section 6. Due to space

limitation, we defer the extensive discussion of related

works in the appendix, which can be found on the

Computer Society Digital Library at http://doi.

ieeecomputersociety.org/10.1109/TPDS.2012.196.

II. LOAD REBALANCING PROBLEM

We consider a large-scale distributed file system

consisting of a set of chunkservers V in a cloud, where the

cardinality of V is jV j ¼ n. Typically, n can be 1,000,

10,000, or more. In the system, a number of files

are stored in the n chunkservers. First, let us denote

the set of files as F . Each file f 2 F is partitioned into a

number of disjointed, fixed- size chunks denoted by Cf

For example, each chunk has the same size, 64 Mbytes,

in Hadoop HDFS [3]. Second, the load of a chunkserver

is proportional to the number of chunks hosted by the

server [3]. Third, node failure is the norm in such a

distributed system, and the chunkservers may be

upgraded, replaced and added in the system.

Finally, the files in F may be arbitrarily created,

deleted, and appended. The net effect results in file

chunks not being uniformly distributed to the

chunkservers. Fig. 1 illustrates an example of the load

rebalancing problem with the assumption that the

chunkservers are homogeneous and have the same

capacity.

Our objective in the current study is to design a

load rebalancing algorithm to reallocate file chunks such

that the chunks can be distributed to the system as

uniformly as possible while reducing the movement

cost as much as possible. Here, the movement cost is

http://doi/

International Journal on Applications in Information and Communication Engineering

Volume 2: Issue 2: February 2016, pp 53-58. www.aetsjournal.com ISSN (Online) : 2394-6237

--- ------------------------------

55

defined as the number of chunks migrated to balance

the loads of the chunkser- vers. Let A be the ideal

number of chunks that any chunkserver i 2 V is

required to manage in a system-wide load-balanced

state, that is where Li denotes the load of node i (i.e.,

the number of file chunks hosted by i) and k k

represents the absolute value function. Note that

“chunkservers” and “nodes” are interchangeable in this

paper.

Fig. 1. An example illustrates the load rebalancing problem,where

(a) an initial distribution of chunks of six files f1 , f2 , f3 , f4 , f5 ,

and f6 in three nodes N1 , N2 , N3.

(b) files f2 and f5 are deleted,

(c) f6 is appended, and

(d) node N4 joins. The nodes in (b), (c), and (d) are in a load-

imbalanced state.

Theorem 1. The load rebalancing problem is N P-hard.

Proof. By restriction, an instance of the decision

version of the load rebalancing problem is the

knapsack problem [23]. That is, consider any node i 2 V .

i seeks to store a subset of the file chunks in F such

that the number of chunks hosted by i is not more than

A, and the “value” of the chunks hosted is at least ,

which is defined as the inverse of the sum of the

movement cost caused by the migrated chunks.

tu

To simplify the discussion, we first assume a

homo- geneous environment, where migrating a file

chunk between any two nodes takes a unit movement

cost and each chunkserver has the identical storage

capacity. How- ever, we will later deal with the

practical considerations of node capacity heterogeneity

and movement

successor of chunkserver n as chunkserver 1. In a

typical DHT, a chunkserver i hosts the file chunks

whose handles the chunks whose handles are in ðn ; n .

To discover a file chunk, the DHT lookup operation

is performed. In most DHTs, the average number of

nodes visited for a lookup is Oðlog nÞ [10], [11] if each

chunkserver i maintains log2 n neighbors, that is, nodes

i þ 2k mod n for k ¼ 0; 1; 2; . . ., n Log 2 1 Log 2

Among the n neighbors the one i þ 20 is the

successor of i. To look up a file with l cost based on

chunk migration in physical network locality.

III. OUR PROPOSAL

Table 1 in Appendix B, which is available in the

online supplemental material, summarizes the notations

frequently used in the following discussions for ease of

reference.

A. Architecture

The chunkservers in our proposal are organized as a

DHT network; that is, each chunkserver implements a

DHT protocol such as Chord [10] or Pastry [11]. A

file in the system is partitioned into a number of

fixed-size chunks, and “each” chunk has a unique

chunk handle (or chunk identifier) named with a globally

known hash function such as SHA1

[24]. The hash function returns a unique identifier for

a given file’s pathname string and a chunk index. For

example, the identifiers of the first and third chunks of

file “/user/tom/tmp/a.log” are, respectively,

SHA1(/ user/tom/tmp/a.log, 0) and

SHA1(/user/tom/ tmp/a.log, 2). Each

chunkserver also has a unique ID. We represent the

IDs of the chunkservers in V by chunks, l lookups

are issued.

DHTs are used in our proposal for the following

reasons:

. The chunkservers self-configure and self-heal in

our proposal because of their arrivals, departures, and

failures, simplifying the system provisioning and

management. Specifically, typical DHTs guarantee that

if a node leaves, then its locally hosted chunks are

reliably migrated to its successor; if a node joins, then it

allocates the chunks whose IDs immediately precede

the joining node from its successor to manage. Our

proposal heavily depends on the node arrival and

departure operations to migrate file chunks among

nodes. Interested readers are referred to [10], [11] for the

details of the self-management technique in DHTs.

. While lookups take a modest delay by

visiting Oðlog nÞ nodes in a typical DHT, the lookup

latency can be reduced because discovering the l chunks

of a file can be performed in parallel. On the other hand,

our proposal is independent of the DHT protocols. To

further reduce the lookup latency, we can adopt state-of-

International Journal on Applications in Information and Communication Engineering

Volume 2: Issue 2: February 2016, pp 53-58. www.aetsjournal.com ISSN (Online) : 2394-6237

--- ------------------------------

56

the-art DHTs such as Amazon’s Dynamo in [12] that

offer one-hop lookup delay.

. The DHT network is transparent to the metadata

management in our proposal. While the DHT net-

work specifies the locations of chunks, our proposal can

be integrated with existing large-scale distribu- ted file

systems, e.g., Google GFS [2] and Hadoop HDFS [3],

in which a centralized master node manages the

namespace of the file system and the mapping of file

chunks to storage nodes. Specifically, to incorporate our

proposal with the master node in GFS, each

chunkserver periodically piggybacks its locally hosted

chunks’ information to the master in a heartbeat

message [2] so that the master can gather n ; n ; n ; . . ; n

; for short, denote the n chunkservers as the

locations of chunks in the system.

B. Load Rebalancing Algorithm

1) Overview

A large-scale distributed file system is in a load-

balanced state if each chunkserver hosts no more than A

chunks. In our proposed algorithm, each chunkserver

node i first. Low movement cost. As node i is the

lightest node among all chunkservers, the number of

chunks migrate.

2) MILP Algorithm.

An integer programming problem is a mathematical

optimization or feasibility program in which some or all of the

variables are restricted to be integers. In many settings the

term refers to integer linear programming (ILP), in which the

objective function and the constraints (other than the integer

constraints) are linear.

A mixed-integer linear program is a problem with

 Linear objective function, f
T
x, where f is a column vector

of constants, and x is the column vector of unknowns

 Bounds and linear constraints, but no nonlinear

constraints (for definitions,

 Restrictions on some components of x to have integer

values

In mathematical terms, given vectors f, lb, and ub,

matrices A and Aeq, corresponding vectors b and beq, and a

set of indices intcon, find a vector x to solve

Fig.3. Effect of hetrogenity

Replica management in distributed systems has

been extensively discussed in the literature. Given any

file chunk, our proposal implements the directory-based

scheme in [32] to trace the locations of k replicas for the

file chunk. Precisely, the file chunk is associated with

k 1 pointers that keep track of k 1 randomly selected

nodes storing the replicas.

IV. VSIMULATION

A. Simulation Setup and Workloads

The performance of our algorithm is evaluated

through computer simulations. Our simulator is

implemented with Pthreads. In the simulations, we

carry out our proposal based on the Chord DHT

protocol [10] and the gossip-based aggregation protocol

in [26] and [27]. In the default setting, the number of

nodes in the system is n ¼ 1;000, and the number of

file chunks is m ¼ 10;000. To the best of our

knowledge, there are no representative realistic

workloads available. Thus, the number of file chunks

initially hosted by a node in our simulations follows

the geometric distribu- tion, enabling stress tests as

suggested in [15] for various load rebalancing

algorithms. Fig. 3 shows the cumulative distribution

functions (CDF) of the file chunks in the simulations,

where workloads A, B, C, and D represent results

indicate that centralized matching introduces

much less message overhead than distributed

match- ing and our proposal, as each node in

centralized matching simply informs the

centralized load balancer of its load and capacity. On

the contrary, in distributed matching and our

proposal, each node probes a number of existing nodes

in the system, and may then reallocate its load

from/to the probed nodes, introducing more mes-

sages. We also see that our proposal clearly produces

less message overhead than distributed

computing. Speci- fically, any node i in our proposal

gathers partial system knowledge from its neighbors

[26], [27], whereas node i in distributed matching

takes Oðlog nÞ messages to probe a randomly selected

node in the network.

https://en.wikipedia.org/wiki/Optimization_(mathematics)
https://en.wikipedia.org/wiki/Constraint_satisfaction_problem
https://en.wikipedia.org/wiki/Linear_programming
https://en.wikipedia.org/wiki/Linear_function_(calculus)

International Journal on Applications in Information and Communication Engineering

Volume 2: Issue 2: February 2016, pp 53-58. www.aetsjournal.com ISSN (Online) : 2394-6237

--- ------------------------------

57

16 256 8

256

Fig.4.Message over head

Fig..5.The Breakdown of WMC

physically closest node to pair with, leading a

shorter physical distance for migrating a chunk. This

operation effectively differentiates nodes in different

network locations, and considerably reduces the WMC.

Fig 6. The experimental environment and performance

results, where (a) shows the setup of the experimental

environment, (b) indicates the time elapsed of performing the

HDFS load balancer and our proposal, and (c) and (d) show the

distributions of file chunks for the HDFS load balancer and our

proposal, respectively.

V. IMPLEMENTATION AND MEASUREMENT

A. Experimental Environment Setup

We have implemented our proposal in Hadoop

HDFS 0.21.0, and assessed our implementation against

the load balancer in HDFS. Our implementation is

demonstrated through a small-scale cluster

environment (Fig. 11a) consisting of a single,

dedicated namenode and 25 datanodes, each with

Ubuntu 10.10 [34]. Specifically, the namenode is

equipped with Intel Core 2 Duo E7400 processor

and 3 Gbytes RAM. As the number of file chunks in our

experimental environment is small, the RAM size of the

namenode is sufficient to cache the entire namenode

process and the metadata information, including the

directories and the locations of file chunks.

In the experimental environment, a number of clients

are established to issue requests to the namenode. The

requests include commands to create directories with

randomly designated names, to remove directories

arbitrarily chosen, etc. Due to the scarce resources in

our environment, we have deployed 4 clients to

generate requests to the name- node. However, this

cannot overload the namenode to mimic the situation

as reported in [8]. To emulate the load of the namenode

in a production system and investigate the effect of the

namenode’s load on the performance of a load-

balancing algorithm, we additionally limit the

processor cycles available to the namenode by varying

the maximum processor utilization, denoted by M,

available to the namenode up to M ¼ 1%; 2%; 8%; 16%;

32%; 64%; 99%. The lower processor availability to the

namenode represents the less CPU cycles that the

namenode can allocate to handle the clients’ requests

and to talk to the load balancer.

As data center networks proposed recently (e.g., [29])

can offer a fully bisection bandwidth, the total

number of chunks scattered in the file system in our

experiments is limited to 256 such that the network

bandwidth in our environment (i.e., all nodes are chunk

in the experiments is set to 16 Mbytes. Compared to each

experimental run requiring

20-60 minutes, transferring these chunks takes no more

than

100 328 seconds 5:5 minutes in case the

network bandwidth is fully utilized. The initial

placement of the

256 file chunks follows the geometric distribution as

discussed in Section 4.

For each experimental run, we quantity the time elapsed

to complete the load-balancing algorithms, including the

HDFS load balancer and our proposal. We perform 20

runs for a vExperimental Results

We demonstrate in Fig. 11 the experimental results.

Fig. 11b shows the time required for performing the

HDFS load balancer and our proposal. Our proposal

clearly outper- forms the HDFS load balancer. When

the namenode is heavily loaded (i.e., small M’s), our

proposal remarkably performs better than the HDFS

load balancer. For example, if M ¼ 1%, the HDFS load

balancer takes approximately 60 minutes to balance the

loads of datanodes. By contrast, our proposal takes

nearly 20 minutes in the case of M ¼ 1%.

Specifically, unlike the HDFS load balancer, our

proposal is independent of the load of the namenode.In

Figs. 11c and 11d, we further show the distributions of

chunks after performing the HDFS load balancer and

our proposal. As there are 256 file chunks and 25

datanodes, the ideal number of chunks that each

datanode needs to host. Due to space limitation,

we only offer the experimental results for M ¼ 1

and the results for M ¼ 1 conclude the similar. Figs.

11c and 11d indicate that our proposal is comparable

to the HDFS load balancer, and balances the loads of

datanodes, effectively.

International Journal on Applications in Information and Communication Engineering

Volume 2: Issue 2: February 2016, pp 53-58. www.aetsjournal.com ISSN (Online) : 2394-6237

--- ------------------------------

58

VI. SUMMARY

A novel load-balancing algorithm to deal with the

load rebalancing problem in large-scale, dynamic, and

distrib- uted file systems in clouds has been presented in

this paper. Our proposal strives to balance the loads

of nodes and reduce the demanded movement cost as

much as possible, while taking advantage of physical

network locality and node heterogeneity. In the

absence of representative real workloads investigated

the performance of our proposal and com pared it

against competing algorithms through synthesized

probabilistic distributions of file chunks. The

synthesis workloads stress test the load-balancing

algorithms by creating a few storage nodes that are

heavily loaded. The computer simulation results are

encouraging, indicating that our proposed algorithm

performs very well. Our proposal is comparable to the

centralized algorithm in the Hadoop HDFS production

system and dramatically out- performs the competing

distributed algorithm in [14] in terms of load

imbalance factor, movement cost, and algorithmic

overhead. Particularly, our load-balancing algorithm

exhibits a fast convergence rate. The efficiency and

effectiveness of our design are further validated

by analytical models and a real implementation with

a small scale cluster environment.

ACKNOWLEDGMENTS

The authors are grateful to the anonymous reviewers

who have provided us with valuable comments to

improve their study. Hung-Chang Hsiao and Chung-

Hsueh Yi were partially supported by Taiwan

National Science Council under Grants 100-2221-E-006-

193 and 101-2221-E-006-097, and by the Ministry of

Education, Taiwan, under the NCKU Project of

Promoting Academic Excellence & Developing World

Class Research Centers. Haiying Shen was sup-

ported in part by US National Science Foundation

(NSF) grants CNS-1254006, CNS-1249603, OCI-

1064230, CNS-1049947, CNS-1156875, CNS-0917056

and CNS-1057530, CNS-1025652, CNS-0938189, CSR-

2008826, CSR-2008827, Microsoft Research Faculty

Fellowship 8300751, and the US Department of

Energy’s Oak Ridge National Laboratory including the

Extreme Scale Systems Center located at ORNL and

DoD 4000111689.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Proces-

sing on Large Clusters,” Proc. Sixth Symp. Operating System Design

and Implementation (OSDI ’04), pp. 137-150, Dec. 2004.

[2] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google File

System,” Proc. 19th ACM Symp. Operating Systems Principles
 ’03), pp. 29-43, Oct. 2003.

[3] Hadoop Distributed File System, http://hadoop.apache.org/

 hdfs/, 2012.

[4] VMware, http://www.vmware.com/, 2012.

[5] Xen, http://www.xen.org/, 2012.

[6] Apache Hadoop, http://hadoop.apache.org/, 2012.

[7] Hadoop Distributed File System “Rebalancing Blocks,” http://

developer.yahoo.com/hadoop/tutorial/module2.html#rebalan-
cing, 2012.

[8] K. McKusick and S. Quinlan, “GFS: Evolution on Fast-Forward,”
 Comm. ACM, vol. 53, no. 3, pp. 42-49, Jan. 2010.

[9] HDFS Federation, http://hadoop.apache.org/common/docs/

 r0.23.0/hadoop-yarn/hadoop-yarn-site/Federation.html, 2012.

[10] I. Stoica, R. Morris, D. Liben-Nowell, D.R. Karger, M.F. Kaashoek,

F. Dabek, and H. Balakrishnan, “Chord: A Scalable Peer-to-Peer

Lookup Protocol for Internet Applications,” IEEE/ACM Trans.
 Networking, vol. 11, no. 1, pp. 17-21, Feb. 2003.

[11] A. Rowstron and P. Druschel, “Pastry: Scalable, Distributed Object
Location and Routing for Large-Scale Peer-to-Peer Systems,” Proc.

IFIP/ACM Int’l Conf. Distributed Systems Platforms Heidelberg,

pp. 161-172, Nov. 2001.

[12] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A.

 Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and

W. Vogels, “Dynamo: Amazon’s Highly Available Key-Value
Store,”Proc. 21st ACM Symp. Operating Systems Principles

(SOSP ’07),pp. 205-220, Oct. 2007.

[13] A. Rowstron and P. Druschel, “Pastry: Scalable, Distributed Object
Location and Routing for Large-Scale Peer-to-Peer Systems,” Proc.

IFIP/ACM Int’l Conf. Distributed Systems Platforms Heidelberg,
pp. 161-172, Nov. 2001.

[14] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A.

 Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and
W. Vogels, “Dynamo: Amazon’s Highly Available Key-Value

Store,” Proc. 21st ACM Symp. Operating Systems Principles

(SOSP ’07), pp. 205-220, Oct. 2007.

[15] A. Rowstron and P. Druschel, “Pastry: Scalable, Distributed Object

Location and Routing for Large-Scale Peer-to-Peer Systems,” Proc.

IFIP/ACM Int’l Conf. Distributed Systems Platforms Heidelberg,

pp. 161-172, Nov. 2001.

[16] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A.
 Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and

W. Vogels, “Dynamo: Amazon’s Highly Available Key-Value

Store,” Proc. 21st ACM Symp. Operating Systems Principles
(SOSP ’07),pp. 205-220, Oct. 2007.

[17] P. Ganesan, M. Bawa, and H. Garcia-Molina, “Online Balancing of

Range-Partitioned Data with Applications to Peer-to-Peer Sys-
tems,” Proc. 13th Int’l Conf. Very Large Data Bases (VLDB ’04),

pp. 444-455, Sept. 2004.

[18] J.W. Byers, J. Considine, and M. Mitzenmacher, “Simple Load
Balancing for Distributed Hash Tables,” Proc. First Int’l Workshop

Peer-to-Peer Systems (IPTPS ’03), pp. 80-87, Feb. 2003.

[19] G.S. Manku, “Balanced Binary Trees for ID Management and

Load Balance in Distributed Hash Tables,” Proc. 23rd ACM Symp.

Principles Distributed Computing (PODC ’04), pp. 197-205, July

 2004.

[20] A. Bharambe, M. Agrawal, and S. Seshan, “Mercury: Supporting
calable Multi-Attribute Range Queries,” Proc. ACM SIGCOMM

 ’04, pp. 353-366, Aug. 2004.

[21] Y. Zhu and Y. Hu, “Efficient, Proximity-Aware Load Balancing for
DHT-Based P2P Systems,” IEEE Trans. Parallel and Distributed

Systems, vol. 16, no. 4, pp. 349-361, Apr. 2005.

[22] H. Shen and C.-Z. Xu, “Locality-Aware and Churn-Resilient Load
Balancing Algorithms in Structured P2P Networks,” IEEE Trans.

Parallel and Distributed Systems, vol. 18, no. 6, pp. 849-862, June

 2007.

http://hadoop.apache.org/
http://www.vmware.com/
http://www.xen.org/
http://hadoop.apache.org/
http://hadoop.apache.org/common/docs/

