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 
Abstract —  Power efficiency is an important design issue in 

mobile devices. A transmitter communicates with multiple 

receivers periodically. Each packet is associated  with  a delay 

constraint. The data streams have different importance levels, 

power functions, and levels of data sizes. The objective is to 

develop the   transmit data streams of different data sizes at 

different transmission rates so that the system reward can be 

maximized under given time and energy constraints. To 

develop a dynamic programming   algorithm for the optimal 

solution in pseudo polynomial time. A fast polynomial-time 

heuristic approach   based on clustering of states in state space 

is presented to achieve close approximation. Simulation 

results demonstrate the effectiveness of the optimal solution 

and the polynomial-time approach can achieve near-optimal 

results. 

 

Keywords — Reward maximization, power-aware packet 

scheduling, wireless networks, embedded systems. 

I. INTRODUCTION 

NERGY is a critical resource of wireless devices 

powered by battery with limited capacity. Reliable 

content delivery over a wireless channel is a major 

source of energy expenditure. The energy expenditure 

for the transmission rate with proper wireless channel 

coding  or  modulation  schemes . As applications are 

usually delay-sensitive, packet delivery delays should be 

allowed only if it is controllable. Different delay 

constraints were investigated  in energy-efficient packet 

transmission such as average delay, a common deadline 

to all packets  and individual deadlines .Most existing 

work focus on the minimization of the total energy 

consumption under the timing constraints. Wireless 

nodes powered by these energy sources are subjected to 

limited amount of energy which is collected in each 
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period. Due to the limitation in both delay and energy, it 

is often impossible for a wireless node to deliver all data 

in the transmission buffer at a time. Instead, the node 

tends to transmit data collected in the buffer selectively 

under time and energy constraints. The periodic data 

streams destined to different receivers may consume 

different amount of energy. These data streams may also 

have different importance. Take image sensing for 

example, the wireless node may support several formats 

with different amount of information, such as in raw data 

format or compressed formats in jpeg and jpeg. With a 

larger data size, more information can be conveyed. 

When a wireless node cannot send all of its data, it is 

more desirable to transmit more valuable data first. To 

quantify the level of importance of a packet, we 

associate a reward to each packet transmitted. The 

objective   is to maximize system rewards under given 

time and energy constraints. Wang  Mandayam tried to 

maximize system throughput and the probability of 

successful file transmission. They considered a 

transmitter that could operate only in two states: either 

an active state or an idle power state. The  reward 

maximization  problems for packets with individual 

energy and delay constraints. We consider a general 

scenario in which a wireless node communicates with 

multiple receivers periodically over an AWGN channel. 

As the receivers may have different distances to the 

sender, they may require different amount of power 

under the same data transmission rates. Each data stream  

has several discrete data size levels and can be 

transmitted at different transmission rate levels. The 

contributions of  work are two folds. First, we propose 

the optimal solution to the time and energy constrained  

reward  maximization problem. We show that the reward 

optimization problem for periodic data streams with 

discrete data sizes and transmission rate levels is NP-

hard. We develop a dynamic programming algorithm to 

solve the problem optimally in pseudo polynomial 

running time. 
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II. SYSTEM MODEL AND PROBLEM      

FORMULATION 

To define data and energy consumption models for the  

reward  maximization  problem. Then, we present a 

formulation of the reward maximization problem under 

given time and energy constraints. 

1) Data Model 

The energy-efficient problem in wireless networks were 

largely targeted at communication channels over a 

single-transmitter-single-receiver model.  A single-

transmitter-single-receiver model is also known as point-

to-point communication.  Where  there  is only one 

transmitter  will communicate with a single receiver. In 

recent years,  generally single transmitter- multiple-

receiver model in which a wireless transmitter  

 
 

 Figure : 1 - Single-transmitter-multiple-receiver  model  in a 

single-hop wireless network 

 

Communicates with multiple receivers periodically. In 

this model, the transmitter can only communicate with 

one receiver at a time and  has an energy budget in each 

transmit cycle. Each receiver will receive data from the 

transmitter periodically. Every transmitter-receiver pair  

has a maximal amount of data to be transmitted in each 

time period. The receivers are located with different 

distances from  the transmitter. The data to different 

receivers can be transmitted at different transmission 

rates. 

2) Power Consumption Model 

The power consumption of a wireless transmitter can be 

divided into two parts: circuit power and transmission 

power. The transmission power usually long-range 

communications (over 100 m) are common in wireless 

networks. In order to maintain the same transmission 

rate, the required transmission power needs to increase 

with the distance between the transmitter-receiver pair to 

offset the propagation loss. The circuit power is 

expected to decrease as the IC technology advances. 

This part of power only occupies a small portion of the 

whole power consumption., we assume the transmission 

power dominates the negligible circuit power. In power 

model, we assume the channel is slowly time-varying, 

which means the channel condition will not change 

during transmission. Proper channel coding can reduce 

the energy consumption effectively during transmission. 

We take the AWGN channel model as an example, 

which explains how energy, rate, and data size are 

related. With optimal channel coding, the maximum 

transmission rate 

 
s the transmission rate, P0 is the received signal power, 

N0 is the spectral density, and B is the channel 

bandwidth. From this equation, we can describe the 

relationship between the transmission rate S and the 

received power P0 by the following equation: 
 

 
 we aforementioned, the power will increase with  

distance between transmitter and receiver in order to 

maintain the same transmission rate. Considering this 

power attenuation, we have 

 
where P is the transmission power and A is the 

attenuation factor for the transmitter-receiver pair. The 

attenuation factor A is generally inversely proportional 

to a function of the distance, denoted by l. For example, 

this function could be a square function, A / 1=l2.  we do 

not assume any specific form of the relationship between 

attenuation factor and distance except that all transmitter 

receiver pairs have the same fading functions which are 

only affected by distance. It is easy to see that the 

required transmission power P is strictly increasing and 

strictly convex in the transmission rate S. This power 

function Pð SÞ is continuous in S though we only 

consider the discrete cases for this function in this paper. 

Let Pi denote the power consumption function for task 

i. Let Ci and Si represent the size and rate of data 

transmission for _i, respectively. The transmission time 

to transmit data Cib units of energy. The energy 

consumed for _i for transmission in one period, denoted 

by Ei, with data size Ci at transmission rate Si becomes 
 

 
 where the coefficient Ai for each transmitter/receiver 

pair differs depending on the distance between them. As 

the channel states and receiving nodes are assumed to be 
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static during the transmission period, the power 

attenuator factor Ai is also static.  

3) Problem Formulation 

We consider the transmission in a hyper period T which 

is defined as the Least Common Multiple (LCM) of task 

periods T1; T2; . . . ; TN. The consideration of a hyper 

period ensures all tasks can finish their periodic 

transmissions at least once. Let Emax represent the units 

of energy budget allocated to the transmitter during this 

hyper period T .The objective is to maximize the total 

reward while all tasks meet their deadlines and the total 

energy consumption does not exceed the budget Emax. 

In  the optimization problem has to find a speed and a 

data size for each task to maximize the overall rewards 

while satisfying delay and energy constraints.        

III. DYNAMIC PROGRAMMING FOR THE 

OPTIMAL SOLUTIONS 

A general method of solving the optimal MMKP 

problem is to search the solution space until an optimal 

solution is found and  confirmed . We can use breadth-

first search to generate partial solution along with the 

sequence of receivers. This algorithm enumerates all 

possible data sizes and transmission rate for each 

receiver. This process can be visualized as a state space 

branch where each non leaf  node in this tree has M _ K 

children if there are M transmission rate levels and K 

data size levels for each receiver. Therefore, a naive 

algorithm would generate  ðM _ KÞi  nodes at level I . 

The state space can grow exponentially with the task 

number. To reach the solution in practical runtime, most 

researchers relied on heuristics to obtain approximated 

solutions or adapted approaches to reduce the 

computational complexity. These approaches  are  not  

readily applicable to our problem as our problem 

involves more decision factors. To develop a dynamic 

programming algorithm  for  the  reward maximization 

optimization  problem with two-dimension multiple 

choices of data size and transmission rate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm1. Reward maximization using  dynamic  

programming 

 

 

IV. TIME-EFFICIENT APPROXIMATION 

Although the above three pruning conditions are 

effective in removing unpromising states, the state space 
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in Algorithm 1 can still expand significantly and it will 

be computationally expensive to get the optimal solution 

with a large number of receivers, data sizes, and  

transmission rates. In practice, it is not always necessary 

to find the optimal solution with limited time and 

computation  resources. A near-optimal solution is more 

desirable if it can be completed in reasonable time while 

consuming reasonable computation resources. First 

propose a polynomial-time heuristic approach. Then, we 

will analyze the complexity of this algorithm. 

 

4.1 Polynomial-Time Approximated Approach 

(Clustering) 

 

We develop a heuristic algorithm, named Clustering 

algorithm, to approximate the optimal solution to the 

proposed problem with a polynomial computational 

time complexity. This Clustering algorithm is novel for 

the proposed problem. The general idea of this algorithm 

can be traced back to data clustering in mathematics. 

This Clustering algorithm is based on a clustering 

property of the final states after we enumerate all the 

tasks. If  we plot the all of the final states  after 

enumerating all possible combinations of data sizes and 

transmission rates into a 3D space with the coordinates 

of  ðreward;  energy;  timeÞ.  We can find the nodes, 

representing the final states, are clustered instead of 

randomly scattering. This is attributed to the discrete 

levels of data sizes and transmission rates. Those nodes 

in the same cluster tend to have close reward values, 

energy consumption, and transmission time. 

  

Figure : 2 - The reward-time-energy relationship in a 3D  space 

V.   PERFORMANCE  EVALUATION 

 We simulate the following four algorithms in our    

experiment: 

 Dynamic programming algorithm for optimal solution: 

We simulate this algorithm to obtain the optimal solution 

for reward maximization problem. . Polynomial-time 

Clustering algorithm (Clustering): 

This is the proposed time-efficient Clustering algorithm 

for a near-optimal solution.  Greedy-pack and greedy-

unpack algorithms: These two algorithms are adapted 

from  as the competitors of proposed polynomial-time 

Clustering algorithm. Though the reward maximization 

problem is different from that in our work, the method of 

designing heuristic approaches is a general principle and 

can still be adapted to the problem studied in this paper. 

We compare the solutions of Clustering, greedy-pack, 

and greedy-unpack with the optimal solution obtained by  

the dynamic programming algorithm. We use the metric 

of normalized system reward to show how close these  

algorithms can approximate the optimal solution. We 

study the effect of different parameters on the simulation 

results and investigate the execution time cost for 

different algorithms. We conduct simulations to show to 

what degree our proposed dynamic programming 

algorithm can restrict the explosion of state space. In 

addition, we Investigate  the  impact on approximation 

by choosing different numbers of clusters and strategies 

of representative node selection for Clustering 

algorithm. 

1)  Simulation Setup 

The wireless channel settings we used are similar to 

those described . The channel bandwidth is 1 MHz. The 

bits per transmission is set to be 1, 2, 4, and 6 bits/Hz 

(BPSK). Each receiver will receive data from the 

transmitter periodically at the above transmission rates. 

These periodic data streams are generated based on the 

following parameters: distance between receiver and 

transmitter, the number of different sizes of data to be 

transmitted, the sizes of data to be transmitted, period, 

and reward values. The distances between transmitter 

and receivers are uniformly distributed in a range of [20, 

200] meters. Under this setup, a transmission power of 

20 mW is required to reliably transmit data at 1 bit/Hz 

(BPSK) at a distance of 100 m.  we can calculate the 

power consumption for different receivers with different 

transmission rates. We assumed the number of data size 

levels to be 5 for all receivers. The data sizes are 

uniformly distributed in the range of ½1; 16_ Mb. The 

periods for each receiver can be represented by the 

number of jobs transmitted to each receiver, denoted by 

fjob1; job2; . . . ; jobNg, within the time interval T. So 

the period Ti can be calculated as Ti ¼ T jobi.  

The value of jobi is a random integer value in the range 

of [1, 12]. Based on the above parameters, we can 

calculate the energy consumptions by the energy 
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function. i ; sMÞ. T is the multiplication of a parameter _ 

and , where 0 < _ < 1 and T  is the total transmission 

time for all data streams to transmit the largest size of 

data at the smallest transmission rate . A lower value of 

_ means more stringent energy constraint and a lower 

value of _ means tighter deadline. We refer to _ and _ as 

energy constraint factor and time constraint factor, 

respectively. In Clustering  algorithm, we assumed nbins 

¼ mbins ¼ 10 _ N _ ðlogM þ logKÞ by default. 

2) Simulation Results 

In this part, we first study the impact of time and energy 

constraint factors on the performance of the four 

algorithms. Second, we investigate the relationship 

between the performance and execution time. Third, 

compared with our previous work.  further study the 

effectiveness of our dynamic programming algorithm for 

optimal solution. Finally, we simulate our Clustering 

algorithm with different parameters to see the effect on 

the extent of the approximation to the optimal solution. 

Impact of Time and Energy Constraint Factors The first 

experiment is to study the impact of time and energy 

constraint factors on the performance. We simulated 

optimal, Clustering, greedy-pack, and greedy-unpack 

algorithms for this reward maximization problem with 

different time and energy constraint factors. The system 

reward normalized to the optimal value is presented . 

The below figure demonstrates the impact of energy 

constraint  factor on the performance. We assumed the 

number of receivers to be 10 and the time constraint 

factor _ to be 0.2. We increased the energy constraint 

factor _ from 0.1 to 0.9 with a step size of 0.1. The 

normalized reward of Clustering increases with the 

increase of energy constraint factor. It is around 95 

percent when _ ¼ 0:1 but can reach more than 99 

percent when_ _ 0:5. The normalized rewards of two 

greedy algorithms always have a big gap larger than 15 

percent from the optimal value even if the energy 

constraint is loose. The best normalized reward is 

bounded by 85 percent. Fig. 6b shows the impact of time 

constraint factor on the performance. We increased the 

time constraint factor _ from 0.1 to 0.9 with each step 

equal to 0.1 and assumed a constant task size of 10 

receivers and a constant energy constraint factor _ ¼ 0:2. 

The results of Clustering are always larger than 95 

percent. With a loose time constraint. 

 

 

3) Impact of Number of Clusters for Clustering 

In the Clustering approach, the size of state space 

depends on the number of clusters, which affects the 

accuracy of final result. In this part, we will study the 

impact of number of clusters on the performance for the 

Clustering algorithm. In all the simulations, we assume  

mbins ¼ nbins, and both the time and energy constraint 

factors to be 0.2. First, we study the impact of different 

number of clusters on the accuracy approaching optimal 

solution and time cost. We tune the value of n bins to be 

50, 100, 200, 400, 800, which  means  the numbers of 

clusters can be 2,500, 10,000, 40,000, 160,000, 640,000. 

The number of receivers is increased from 5 to 30 with 

each step equal to 5.  The impact of different number of 

clusters on both the accuracy and execution time of 

Clustering algorithm. We notice that both the normalized 

system reward and execution increase with the increase 

of cluster  number  . This is because larger number of 

clusters preserves  more  states  in each  iteration. So the 

states that can lead to optimal or near optimal solution 

will be more likely preserved for future search, which 

will lead to more execution time cost. More receivers 
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lead to larger state space. This requires us to have a large 

enough number of clusters to get more precise solution. 

VI.   CONCLUSION 

The  reward  maximization  problem  under  time  and 

energy constraints will be defind by using wireless 

network . Transmitting different periodic data streams to 

different  receivers  will consume different energy and 

produce different reward values. Each data stream has 

several levels of data sizes while the transmitter can 

deliver them at several levels of transmission rate. The 

objective is to maximize system  reward  under  time and 

energy constraints  by selecting a certain data size and a 

certain transmission rate for each data stream. The exact 

optimal solution is obtained by the dynamic 

programming algorithm. Instead of searching the 

optimal solution with tremendous costs, we propose 

time-efficient approximated approaches, including a 

polynomial-time   heuristic approach and two greedy 

algorithms, to approximate the optimal solution closely 

at much lower cost. Simulation results demonstrate the 

effectiveness of the dynamic programming algorithm for 

exact optimal solution and the performance of the 

polynomial-time  heuristic approach in approximating 

the optimal solution. The resource being allocated is 

usually  power or bandwidth, and the quantity to be 

maximized is most often Shannon capacity. 
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