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Abstract—   With the introduction of Network Function Virtual-

ization (NFV) technology, migrating entire enterprise data centers 

into the cloud has become a possibility. However, for a Cloud 

Service Provider (CSP) to offer such services, several research 

problems still need to be addressed. In previous work, we have 

introduced a platform, called Network Function Center (NFC), to 

study research issues related to Virtualized Network Functions 

(VNFs). In a NFC, we assume VNFs to be implemented on virtual 

machines that can be deployed in any server in the CSP network. We 

have proposed a resource allocation algorithm for VNFs based on 

Genetic Algorithms (GAs). In this paper, we present a com-

prehensive analysis of two resource allocation algorithms based on 

GA for: (1) the initial placement of VNFs, and (2) the scaling of 

VNFs to support traffic changes. We compare the performance of the 

proposed algorithms with a traditional Integer Linear Programming 

resource allocation technique. We then combine data from previous 

empirical analyses to generate realistic VNF chains and traffic 

patterns, and evaluate the resource allocation decision making 

algorithms. We assume different architectures for the data center, 

implement different fitness functions with GA, and compare their 

performance when scaling over the time. 

 

Keywords—      Network Function Virtualization (NFV), Cloud Re-

sources Optimization, Genetic Algorithms. 

I. INTRODUCTION 

etwork Function Virtualization (NFV) [1] is a promising 

technology that proposes to move packet processing from 

dedicated hardware middle-boxes to software running on 

commodity servers. As such, NFV brings the possibility of 

outsourcing enterprise Network Function (NFs) processing to 

the cloud. When an enterprise outsources its NFs to a Cloud 

Service Provider (CSP), the CSP is responsible for deciding: 

(1) where initial Virtual NFs (VNFs) should be instantiated, 

and (2) what, when and where additional VNFs should be 

instantiated to satisfy changes in the traffic (scaling) with 

minimal impact on network performances. 

Existing work on cloud resource allocation for VMs are not 

suitable for cloud resource allocation for VNFs. Optimizing 
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the placement of VMs in a cloud tend to be node-centric as 

VMs are end-points. Optimizing the placement of VNFs is, in 

contrast, network-centric: their provisioning normally involves 

service chains of VNFs rather than individual VNFs. The 

placement of a service chain requires allocation of server 

resources (for the VNFs), as well as allocation of network 

resources (paths) to route traffic flow from one VNF to next 

VNF in the chain, within the cloud. Furthermore, most of the 

existing work on placement of VNFs, consider only a part of 

the problem, by optimizing either host or bandwidth resource, 

but do not provide an integrated view of computation, storage 

and networks optimization [2]. Despite some initial efforts [3], 

[4], [5], the dynamic resource allocation for scaling VNFs 

presents still many open challenges. One of the challenges is 

how to achieve scaling, i.e., whether to use horizontal (i.e., 

installation/removal of VNF instances), or vertical scaling 

(i.e., allocation/release of host and bandwidth resources 

to/from a VNF instance) or both. A second challenge is how to 

resolve potentially conflicting optimization objectives: for 

instance, re-allocating resources in a way that minimizes 

changes to current configuration, and therefore minimally 

disturbes current net-work activities, and at the same time 

optimize usage of server and network resources [6]. 

In this paper we argue that mixed Integer Linear Program-

ming (ILP), traditionally used to optimize VM allocation and 

network management in cloud data centers [7], is not suitable 

for online scaling of VNFs in response to traffic changes. This 

is because solving ILP problems can take hours [8]. Instead, 

one can find suitable approximation algorithms for the 

optimization. In previous work [8], we started to investigate 

our hypothesis, by proposing two new resource allocation 

algorithms, based on Genetic Programming (GP), for the 

initial placement of VNFs, and the scaling of VNFs to support 

traffic changes. Similar to recent work in data centers [9], to 

make more efficient utilisation of the NFC resources, our 

approach allows both computing resources and network 

config-urations to be managed concurrently and assumes a 

Software-Defined/OpenFlow infrastructure [10] to easily 

reconfigure the physical network. In this paper, we provide a 

more in-depth analysis. Building upon our previous results [8], 

[3], we present an improved version of our GP resource 

allocation algorithms that use more effective genetic 

operations, conduct an extended evaluation of these 

algorithms, and discuss a comprehensive analysis of their 

performance. The specific contributions of the paper are as 
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follows. 

First, we define the Network Function Center Resource 

Management Problem (NFCRMP) as a set of ILP equations. 

They address both (1) the resource allocation for new VNFs 

provisioning, and (2) the resource allocation for the scaling 

of existing VNFs to support traffic changes. In the context of 

resource allocation for new VNFs, the goal is to minimize the 

required resources (i.e., number of servers, number of links, 

and average link utilization). In the context of resource 

allocation for scaling of existing VNFs, the aim is to adjust the 

resources to satisfy the traffic changes and, at the same time, 

minimize the number of configuration changes to reduce 

potential service disruptions, and performance degradation. 

We developed algorithms to solve the NFCRMP using both a 

GP and an ILP approach. 

Second, we implemented the ILP formulation of the 

NFCRMP in CPLEX [11] and implemented the approximation 

algorithms using GP, and compared their performances for 

small networks. We ran experiments where the objective con-

sisted in deploying a set of new VNF chains, and considered 

VNF chains with 10 VNFs and 20 VNFs in a 4 server 

environment. In both cases, the GP gave the exact optimal 

solution as ILP. When we increase the number of servers to 

16, GP was able to find solutions fast (average of 47 

milliseconds), while the ILP implementation ran for nearly 6 

hours, and even crashed without finishing correctly. The 

results confirm that the time to solve ILP problems renders 

ILP not suitable for the online deployment and scaling of 

VNFs, and suggest that the GP generated solutions can 

provide optimal – or close to optimal – solutions in 

significantly shorter amount of time, which is more suitable to 

the NFCRMP problem. 

Third, we present a comprehensive evaluation of the pro-

posed GP approach for large networks. We ran experiments 

both for the deployment of new VNF chains, and for the 

scaling of existing VNF chains, using realistic traffic pat-terns 

[12]. We considered three network architectures: (1) a k-fat 

tree architecture [13], (2) a BCube architecture [14], and (3) a 

VL2 architecture [15]. As the GP process relies on an initial 

solution, we used simple Depth First Search (DFS) and 

random approaches to find an initial solution, and considered 

this solution as the baseline to compare solutions given by GP 

process after 200 generations. Our results showed that the 

performance of the algorithms highly depends on the network 

architecture, as each network architecture has a different num-

ber of nodes. The GP process provided an average objective 

value improvement of up to 7.87% over the initial solution 

(the baseline) which results in reductions of the average link 

utilization of up to 28.7%. Furthermore, our results showed 

that the GP algorithm can decide server and network 

allocations for hundreds of policies (around 400 VNFs) in a 

128 server environment and find reasonable solutions in 

milliseconds. 

Fourth, we study the quality of the GP generated solutions 

over time. Whenever we need to reallocate resources to scale, 

we adopted a ―local approach‖ to find solutions, where we 

limit the resource re-allocation only to policies affected by 

traffic change. These ―local approach‖ solutions may 

gradually diverge from the optimal solution of a ―global 

approach‖ solu-tion given that the local approach solutions 

strive to minimize not only the required resources, but also the 

number of changes in the network. We compared the solutions 

computed by the GP approach with its ―global approach‖ 

solutions, generated by ignoring the need to minimize the 

number of changes in the network. Our results showed that, 

although the ―global approach‖ provides better resource 

allocations, the solutions require drastic re-arrangements to the 

current configurations, and therefore is impractical in real 

scenarios. In contrast, ―local approaches‖ provide reasonable 

solutions with lesser changes to readjust configurations, 

without diverging from the ―global approach‖ solutions over 

time. 

The rest of the paper is organized as follows. Related work 

is presented in Section II. Section III gives a brief description 

of our experimental NFV platform and its management 

system, the Network Function Center (NFC). Section IV 

describes the formulation of Network Function Center 

Resource Manage-ment Problem (NFCRMP) as a set of ILP 

equations for new VNFs provisioning and dynamic scaling. 

Section V describes the GP based resource allocation 

algorithms implementations and a performance comparison 

between ILP and GP. Section VI describes our experimental 

set-up. Sections VII and VIII show the results of a 

comprehensive performance evaluation of GP based resource 

allocation algorithms. Our final remarks can be found in 

Section IX. 

II. RELATED WORK  
 

Traditionally Integer Linear Programming (ILP) has been 

used in cloud resource allocations to optimize VM allocation 

and network management [7]. However, this approach can be 

applied only if adjustments to traffic demands are made in the 

order of hours [8]. Finding an optimal allocation is com-

putationally hard [16]. Hence, more practical solutions look 

for approximations. There have been several recent studies on 

optimizing orchestration and placement of VNFs using 

heuristic based approaches. Provisioning requests from 

cloud’s users involves service chains of VNFs instead of 

single VNFs [17], [18], [19], [20]. The placement of these 

VNF chains in physical machines and use of the network 

bandwidth are therefore crucial for performance of a NFC 

[21]. 

Most of the existing solutions focus on the initial placement 

of VNFs in the cloud, striving to minimize the number of 

VNFs instances used in the cloud, and possibly an overall 

network cost, using heuristics based resource allocation algo-

rithms [22], [23], [24], [16], [25], [8], [3], [26], [27], [28]. 

Those existing solutions assume that a VNF instance can be 

shared across policies. In contrast, our work on initial 

placement of VNFs explores a different angle of the problem: 

we assume that a given VNF instance is dedicated to a single 

policy. This assumption is to provide tenant isolation. 
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To offer infrastructure resources for client’s traffic on an 

on-demand basis, following the initial placement, VNFs may 

need to be rescaled over time. The work on scaling of VNFs is 

limited [3], [4], [5]. Similarly to the initial placement problem, 

existing solutions for scaling also look for approximations. Li 

et al. works with VNF chains and solves the initial placement 

problem by iterating over initial input chains [4]. Scaling is 

achieved by duplicating full instances of VNF chains and the 

optimization is very dependent on the datacenter architecture. 

Milad et al. optimizes one VNF at a time, independent of the 

order of the VNFs in the VNF chain. In addition, the proposed 

solution performs a local optimization, as they do not consider 

optimizing the placement of full VNF chain [5]. In contrast, 

our model takes a middle approach: we consider chains of 

VNFs and assume that in a chain the increase of resources 

demand is likely to happen in isolated VNFs. However, we 

perform the optimization in the context of the full chain. We 

optimize server and bandwidth utilization as well as the cost 

of making modifications. Furthermore, our approach does not 

depend on the datacenter architecture. 

III. OVERVIEW OF EXPERIMENTAL 

PLATFORM: NETWORK  FUNCTION 

CENTER (NFC) 
 

We are building an experimental platform, called Network 

Function Center (NFC), to study management issues related to 

the combined management of VNFs. The architecture and the 

complexity of our experimental NFC platform are simpler 

than those defined by existing standardization bodies (e.g., 

ETSI, IETF) [1]. This simplification allows us to focus on 

specific research aspects and conduct experiments. Contrary to 

traditional NFs that are hardware based middle-boxes, 

deployed at specific locations in the network, the NFC 

assumes a NF to be implemented by a VM that can be 

deployed in any server in the Cloud Service Provider network. 

In this section, we briefly describe the functionality we expect 

from a NFC and the proposed architecture. 

We assume that the NFC delivers VNFs as a service to 

clients on a subscription basis. To receive services from a 

NFC, a client needs to provide the following specifications: 

(1) the types of required VNFs, and interconnectivity 

between them (policy), (2) the ingress and egress locations of 

client’s traffic flow, and (3) the initial expected traffic load to 

be processed by these VNFs. Once the client request is 

accepted by the NFC, the client’s traffic is redirected to the 

NFC to traverse the VNFs. The NFC must guarantee that the 

client’s traffic traverses all the VNFs in the correct order. 

However, traffic may change over time, when compared to the 

initial expected traffic load provided by the client. Therefore, 

the client can request for a flexible service level agreement 

where for example, the infrastructure resources are adjusted to 

satisfy the traffic changes and demands. The NFC is expected 

to scale resources (horizontally or vertically) to handle the 

traffic changes according to the agreements with the client. 

 

The NFC consists of two main components: a physical 

infrastructure, and a management system for the infrastructure. 

The physical infrastructure comprises a network and a server 

infrastructure. The network infrastructure provides connectiv-

ity for all communications occurring in the NFC and between 

the NFC and its users. The server infrastructure hosts all 

VNFs. Servers in the NFC are used to deploy the virtual 

machines (VMs) where the VNFs run. A NF is implemented 

as a software on a VM. The NFC should configure its network 

to route traffic flow from one VNF to the next VNF of the 

policy (to its successor), according to the order given in the 

policy. 

The goal of the NFC Management system is to automate 

arrangement, coordination and management of NFC compo-

nents to satisfy the maximum number of client requests with a 

specified level of QoS. The NFC Management System is built 

around five key modules: (1) Resource Manager, (2) Topology 

Manager, (3) Flow Manager, (4) Elasticity Manager and (5) 

Rules Generator. The Topology Manager is responsible for 

maintaining the state of the physical infrastructure of the NFC. 

This includes information about current network information 

(i.e, server and link utilization information) and topology data 

(i.e, network architecture). Once a new client request is 

submitted, the Resource Manager module considers current 

network information and topology data (provided by the 

Topology Manager) in addition to the constraints such as 

maximum capacity of servers and links, and takes decisions on 

the placement of VNFs and the paths for the client’s traffic to 

follow inside the NFC. The Resource Manager is also called 

by the Elasticity Manager. The Elasticity Manager monitors 

the resource’s utilization and takes decisions on when to scale 

resources for the traffic changes. The Resource Manager then 

determines the re-allocation of server and network resources 

to satisfy the new demands based on the current network 

infor-mation, topology data and constraints. The Flow 

Manager, and Rules Generator configure the network 

according to decisions taken by the Resource Manager and 

Elasticity Manager. More details of the architecture of our 

NFC can be found in [8]. 

IV. NETWORK FUNCTION CENTER 

RESOURCE MANAGEMENT PROBLEM 

(NFCRMP) 
 

The Resource Manager module has two responsibilities: 

1)    New policy requests provisioning: upon receiving a new 

set of policies, the Resource Manager takes into account 

the physical network, servers constraints, and already 

allocated resources, to identify the resources where to 

instantiate the VNFs of the new policy;  

2)   Scaling of existing policy requests: upon receiving scal-ing 

requests from the Elasticity Manager, the Resource 

Manager decides the re-allocation of resources in order to 

satisfy traffic changes.  

In the following section, we formalize our problem, the 

Network Function Center Resource Management Problem 

(NFCRMP), as a set of ILP equations for (1) resource alloca-

tion for the new policy requests provisioning, and (2) resource 
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allocation for the scaling of existing policy requests to support 

traffic changes. For the new policy requests provisioning, the 

NFCRMP aims at minimizing the required server and network 

resources (e.g., average link utilization.) For the scaling of 

existing policies, in addition to minimizing the required server 

and network resources, the NFCRMP also aims at minimizing 

the number of changes in server and links configurations. 

Table I provides a description of the key notations used in 

NFCRMP. 

A. New policy requests provisioning 
 

We consider a NFC with M servers and L links. A link l 

connects a server to a switch, or a switch to another switch. 

The amount of resource capacity of server m is denoted Hm, 

and the network capacity of link l is denoted Kl. A path p 

between two servers (a source and a destination server pair), is 

composed by two or more links. P denotes the set of the 

shortest paths between all source and destination server pairs 

in the NFC. Given a path p (in P ) that connects server m1 and 

m2, Qp represents the source server (m1), and Rp represents 

the destination server (m2). The variable El
p
 indicates whether 

link l is used on path p. As explained in Section VI-D, the 

definition of the shortest path can vary based on the network 

architecture type, as each of them have different default 

maximum hop count for a path between two servers. 

TABLE I - SUMMARY OF KEY NOTATIONS 

  
The number of VNFs running in the NFC is denoted by N. 

Each VNF n is characterized by its resource requirements: 

(1) the required server capacity (Sn), and (2) the required 

bandwidth: the expected amount of the traffic flow (Bn). For 

each VNF n in the requested policies, we find a server to place 

the VNF. The server must support the physical resource 

requirements of the VNF. Also, if the VNF is not the last VNF 

of the policy chain, we find a path to route the traffic of the 

VNF to its successor in the policy chain. The successor is the 

next VNF(s) according to the sequence in the policy chain. 

Links in the selected paths should support the bandwidth 

requirements of the VNF. 

We define Zn
m
 to be a binary variable for placing VNF n on 

server m, such that, if VNF n is placed on server m, then Zn
m

 = 

1, otherwise it is 0. 

Let Gm 2 f0; 1g be a binary variable indicating whether 

server m is used in a configuration solution. Therefore, the 

total number of servers used in a configuration solution is: 

 
The traffic flow of VNF n to its successor is represented by 

the vector Bn. To configure the routing between VNF n and its 

successor, we need to find a path in P , joining the servers 

where VNF n and its successor reside. Therefore, we define 

A
p
n to be a binary variable that indicates if path p is used to 

route traffic between VNF n and its successor, such that, if 

traffic of n to its successor is routed on path p, then A
p

n = 1, 

otherwise it is 0. 

Let Fl 2 f0; 1g be a binary variable indicating whether link l 

is used in a configuration solution. Therefore, the total number 

 
 The NFC Management System takes decisions on new 

policy requests provisioning, with the goals of minimizing the 

average link utilization and the number of servers used. We 

assume that if a VNF has to be placed on a server, then the 

server has to be switched on and the server is considered as a 

server that is in use. Therefore, we want to minimize the 

number of servers used, so that the already switched on 

servers, can be utilized efficiently. Furthermore, as the NFC 

network has more than one path between most of the (source, 

destination) server pairs, and these paths mostly use different 

links, the NFC Management System tries to maximize the 

number of used links, so that the system is encouraged to use 

different paths to route traffic between each (source, 

destination) server pair. This results in distributing traffic over 

different paths, and reducing the average link utilization. We 

highlight that since U is an average, we normalize the 

following optimization function by considering the number of 

servers M, and links L, and introduce weighting factors w1; 
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w2; w3 to allow operators to tune the trade-offs between the 

optimization factors. The NFCMP can be explained as the 

following constrained optimization: 

Minimize 

 
Constraints (2a) and (2b) model the server resource con-

straints of the NFCMP. Constraint (2a) guarantees that each 

VNF in a policy is placed on one and only one server. 

Constraint (2b) guarantees that, for each server, if the server is 

used (captured by Gm), then the total capacity consumed by all 

VNFs placed on the server does not exceed the total capacity 

of that server. Constraints (2c) to (2g) model the network 

resource constraints of the NFCMP. If a VNF is not the last 

VNF of a policy, constraint (2c) guarantees that the VNF has a 

path to its successor. Constraint (2d) guarantees that for each 

link, if the link is used (captured by Fl), then the total 

bandwidth consumed by the VNFs does not exceed the total 

bandwidth of that link. Since we are maximizing ―the number 

of links used‖ in the objective function, constraint (2e) 

guarantees that a link is counted as ―used‖, only if it is actually 

used in the configuration solution. Constraints (2f) and (2g) 

guarantee that the path selected for a VNF to send traffic to its 

successor, starts from the server where the VNF resides 

(source server), and ends in the server where the VNF’s 

successor resides (destination server). 
 

subject to 

 

 

 

 

 

B.  Scaling of existing policy requests 
 

In the scaling situations, the optimization needs to consider 

the current configurations of the system, so that we can 

minimize the disturbances to the existing traffic flows when 

implementing the solutions provided by the optimization to 

satisfy the new traffic changes. Therefore, while trying to 

minimize the link utilization, and required servers in the 

optimization process, we also try to minimize the changes to 

the current system. We use additional variables to represent 

the previous state of the NFC, i.e., the state of the NFC before 

scaling. N
0
 , M

0
 , L

0
 and P 

0
 represent the number of VNFs, 

number of servers, number of links and number of paths in the 

state before the scaling. (El
p
)

0
 , (Zn

m
)

0
 and (A

p
n)

0
 represent 

whether link l is used on path p, the binary decision for 

placing n on server m, and the binary decision for routing 

traffic of n on path p in the state before the sclaing. 

Hence, the total number of servers changed, C, and total 

number of links changed, D, from the current state to the new 

state, is captured by the following equations: 

 
The optimization function of the scaling process tries to 

minimize the server and link changes, in addition to the three 

parameters introduced in Equation (1) for the optimization of 

new policy requests provisioning. Therefore, the optimization 

function of the scaling process includes the parameters C and 

D. Operators can then freely tune the trade-offs between these 

five optimization parameters, using the weighting factors w1; 

w2; w3; w4; w5. 

The scaling component of the NFCRMP, can therefore be 

formalised as the following constrained optimization: 

Minimize 

 

V. NFCRMP: GP APPROACH  
 

As shown in previous studies [24], [16] finding an optimal 

solution for the VNFs placement is a NP-hard problem. 

Furthermore, our results in Section VC1 show that finding the 

optimal solution for the ILP Equation (1) can take hours and is 

consequently not suitable to meet traffic changes in the NFV 

context. Instead of finding optimal solutions (e.g., solutions 

returned by an ILP solver), we, therefore, believe it to be more 

realistic to look for good feasible configurations. We explore 
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approximation techniques, and model the problem as finding 

the best fitted solution according to a Genetic Algorithmic 

(GA) model of the problem, after a fixed amount of 

generations have been explored. The two main responsibilities 

of the Resource Manager module new policy requests 

provisioning, and scaling of existing policy requests are 

implemented independently but both rely on Genetic 

Programming (GP) as the mechanism to allocate resources. 

GAs are part of evolutionary computing and were 

introduced as a computational analogy of adaptive systems 

[29]. They are modelled loosely on the principles of the 

evolution via natural selection, employing a population of 

individuals that undergo selection in the presence of variation, 

inducing operators such as mutation and crossover. A fitness 

function is used to evaluate individuals, and reproductive 

success varies with fitness. 

GAs can be described by the following five key steps [29]:  
1. Generate an initial population F (0) with n full solutions  

2. Compute the fitness value u(f) for each individual full    

    solution f in the current population F (t)  

3. Generate the next population F (t + 1), by selecting i best  

    full solutions from F (t)  

4. Produce offspring by applying the genetic operators to    

    population F (t + 1)  

5. Repeat from Step 2 until a satisfying solution  

Following the terms used in GA, a possible configuration 

state of the NFC (represented by the servers and paths 

assignments for VNFs) is considered as a full solution f, if it is 

an allocation of server and network resources for all the 

policies in the system. We call a configuration where only one 

of the policies has been allocated resources, a partial solution. 

If there are m number of policies in the NFC, then a full 

solution contains m number of partial solutions, each 

representing the allocation of resources (i.e., servers and 

paths) for each policy. The population F (t) consists of n full 

solutions which represents different possible configuration 

states for the NFC. We have considered two types of genetic 

operators to produce offspring: (1) mutation and (2) crossover. 

The crossover is a convergence operation which is intended to 

pull the population towards a local min or max. On the other 

hand, the mutation is a divergence operation which is intended 

to occasionally break one or more members of a population 

out of a local min/max space and potentially discover a better 

space. Since the end goal is to bring the population to 

convergence, crossovers happen more frequently (typically 

every generation). The mutation, being a divergence 

operation, should happen less frequently, and typically only 

affects a few members of a population in any given 

generation. 

 

In our implementation, mutation is achieved via two 

independent operations: replacement and rewire. In the 

replacement mutation we try to change the currently allocated 

server of a VNF   we remove the VNF from the current server 

and try to place it in a different server. In our previous work 

[8], we tried to change the server of a single VNF of a selected 

policy. However, in this work, we try to change the server of 

all VNFs of the selected policy, and try to place all the VNFs 

of that policy in a different server. Specifically, we select a 

random full solution from the population and randomly pick a 

partial solution from the selected full solution. We, then, 

attempt to find a new server where all VNFs in that partial 

solution can be placed on. If a new server is available to place 

the selected VNFs, then we find the necessary paths between 

selected VNFs and their successors by considering the new 

placement. We have observed that trying to change the 

placement of all VNFs of a policy and place them in a 

different (single) server provides better solutions than trying to 

change the placement of a single VNF of the policy. The next 

mutation is the re-wiring, where we try to change the path 

between two given VNFs and find a different path. Similar to 

re-placement mutation, we first select a random full solution 

from the population and randomly pick a partial solution from 

the selected full solution. Then, we select a random VNF in 

the partial solution and attempt to find a new path to its 

successor. 

As for crossovers, we first select two random full solutions 

from the population and randomly pick partial solution from 

each selected full solution. Then, we check whether the con-

figuration given in the first partial solution can be applied to 

the second partial solution and vice versa. If both ways are 

possible, then the configurations of partial solutions will be 

changed accordingly. 

Each generation of the GP approach goes through mutations 

and crossovers. The newly generated solutions are evaluated 

according to a fitness function. We use two different fitness 

functions, one for the new VNFs provisioning, and another for 

the scaling out/in. These fitness functions are derived 

according to the optimization functions defined in the ILP 

formulation, namely equations (1) and (3). 

A.  New policy requests provisioning: global approach 
 

For the new policy requests, the Resource Manager uses 

network’s traffic, topology data, server constraints and the 

client requirements as inputs. Within the given physical 

network constraints and previously allocated resources for the 

existing policies, first, for each VNF in each new policy 

request, the Resource Manager selects: (1) a server depending 

on the server capacity requirement of the requested VNF and 

(2) a path(s) depending on the expected traffic load for the 

requested VNF. We have considered two types of initial 

selections: (1) Depth First Search (DFS), and (2) Random. In 

the DFS method, servers and paths are selected by searching 

through the whole search space and selecting the first solution 

we come across. The random method searches servers and 

paths randomly anywhere in the network, until a feasible 

configuration is found. The configuration state (the servers 

and paths allocation) that the Resource Manager comes up 

with for a new policy request, i.e, a partial solution. 

Combination of all partial solutions (each representing a 

policy) forms a full solution. Second, the Resource Manager 

applies the fitness function derived from the optimization 
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function in Equation (1), to each full solution. Unless 

specifically mentioned, for all our experiments, we assumed 

equal weights for all the parameters in the fitness function. 

Third, the full solutions that return small values are preferred, 

and selected as the best solutions for the next generation 

population. Fourth, the Resource Manager performs ―global 

approach‖ where it applies genetic operators (mutations and 

crossover) on randomly selected partial solutions of randomly 

selected full solutions to generate offsprings, i.e., new full 

solutions. The last three steps are repeated until x number of 

generations are explored and the best full solution is selected 

as the configuration for the new VNFs provisioning. 

B.  Scaling of existing policy requests: local approach 
 

For the scaling, the Resource Manager starts with the 

current state and search for the re-assignment of resources 

(servers and paths) for the set of VNFs that are scaling, using 

DFS/random methods. Partial solutions relevant to the scaling 

are modified according to the servers and paths found. The 

fitness function, derived from the optimization function in 

Equation (3), is used to measure how good each full solution 

is. As in the previous new policy requests provisioning, unless 

specifically mentioned, for all our experiments, we assumed 

equal weights for all the parameters in the fitness function. In 

contrast to the ―global approach‖, which is performed during 

the initial resource allocation process, when scaling we adopt 

a ―local approach‖. Because we want to minimize the changes 

to current configurations, mutations and crossovers are carried 

out only to the VNFs which were changed because of the 

scaling (not to the all VNFs of the policies that are scaling). 

As mentioned earlier, the process is continued until x number 

of generations are explored and the best full solution is 

selected as the configuration for re-assignment of the policy. 

C.  NFCRMP: GP approach vs ILP approach 
 

We compare the GP approach with the ILP approach in the 

case of new policy requests provisioning. We have imple-

mented the ILP formulation of the NFCRMP in CPLEX [11] 

(version 12.5.1 with default settings) and carried out our 

experiments in a machine with an Intel core i7-4500u 

processor and 8GB of RAM. 

1) Configuration solution timing:  

We have conducted a set of experiments to compare the time 

taken to find a solution for new policy requests provisioning 

by ILP and GP approaches. For the GP process, the total time 

includes both (1) to find an initial solution using DFS, and (2) 

the GP process over 200 generations. We have considered a 

small NFC with a k-fat tree architecture. We have assumed an 

environment with 2 pods and 4 servers, where each pod is 

connected 2 servers. For a set of policy requests with total of 

10 VNFs, ILP took 0.9 seconds while GP took 0.0032 seconds 

and for a set of policy requests with total of 20 VNFs, ILP 

took 12.5 seconds while GP took 0.0034 seconds to find the 

exact optimal solution. However, when we increase the 

number of pods and servers, for an example, when we have a 

topology with 4 pods and 16 servers, where each pod is 

connected 4 servers, ILP implementation ran for nearly 6 

hours, but crashed without finishing correctly. Therefore, 

although the ILP formalisation of the problem gives the 

optimal solution, the ILP computational time requirement 

makes it not suitable even for a few VNFs in a large scaled 

network.  

2)  Configuration solution quality:  

In the next set of experi-ments, we compared the quality of the 

solution for new policy requests provisioning of ILP and GP 

approaches. In addition to the objective value, we specifically 

looked at the number of servers and links have been used and 

the link congestion in solutions of ILP and GP approaches. We 

have assumed an environment with 2 pods and 4 servers, 

where each pod is connected 2 servers. As explained in earlier 

sections, the GP process can rely on either (1) DFS, or (2) a 

random approach to find the initial solution. We carried out 

separate GP process experiments with both types of initial 

solutions. We explored different classes of problems where we 

assume that the 10 VNFs are distributed over one, two or three 

policies. By varying the capacity requirements of VNFs, we 

observed that there are different classes of these problems, 

where the differences are based on number of servers required 

by these VNFs. We made sure to select 3 cases in which the 

DFS would not give the optimal solution, because we wanted 

to explore how the GP process improves the solution given by 

DFS. Specifically: (1) 10 VNFs belong to three policies, but 

all of them fit onto a single server, (2) 10 VNFs belong to two 

policies, and they fit onto two servers and (3) 10 VNFs belong 

to three policies, but they fit onto a single server.  

In all 3 sets of experiments, DFS gave better initial solution 

than random. Therefore, when the DFS solution was given as 

the input to the GP process, in all 3 cases, within 200 

generations, the GP algorithm was able to find solutions with 

objective values that are exact to the optimal solutions given 

by ILP. In addition to the objective value, the number of 

servers and links have been used and the link congestion in 

solutions of GP approach were similar to the solutions of ILP 

approach. As described in Section V-A, the DFS method is a 

good bin-packing strategy, and therefore the solutions given 

by the DFS uses minimal number of servers required. Also, it 

introduces less inter-rack traffic, as it tries to place VNFs of a 

policy in the same server as much as possible. Since the 

random method selects servers and paths randomly that can be 

anywhere in the network, it uses much more servers and 

introduces high inter-rack traffic, as the policy is splitted and 

VNFs are placed in servers that are in different pods. Because 

of these reasons, the initial solutions provided by the DFS was 

better than the random approach. However, as the solution 

provided by the DFS tended to use fewer links and those links 

were congested, GP was able to improve the solution by using 

different paths with different links to distribute the traffic and 

reduce the average link utilization. 
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VI. EXPERIMENTS FOR NFCRMP WITH GP 

APPROACH 
 

Experiments results, described in Section V-C, show that 

the ILP approach is not suitable for large networks with 

dynamic requirements, but the GP approach can find 

reasonable solu-tions fast. We have therefore conducted a 

more comprehensive evaluation of the performance of the 

NFC Management System when using our proposed GP 

approach. The rest of the paper focuses on this evaluation and 

specifically on the performance of the Resource Manager 

module when using the GP approach for large networks with 

dynamic requirements. 

We have developed a prototype of the NFC Management 

System, in C++ and Python. Conceptually, the Resource 

Manager, Topology Manager, Elasticity Manager and Flow 

Manager can be seen as controller applications, while the Rule 

Generator as an extension to the network operating system. 

The network of our prototype makes use of SDN to allow 

programmatic control over the traffic flow and easy 

reconfiguration of the physical network. We have 

implemented the physical structure in Mininet [30], used Ryu 

[31] as the SDN controller, and bro firewalls and iptables as 

VNFs [10]. To conduct a more realistic evaluation, we needed 

data on: 

(1) potential VNFs chains (policies), (2) traffic flows 

passing through these VNFs chains, (3) how the traffic 

changes affect the VNFs (scaling) and (4) different data center 

architectures for the NFC. However, there are no publicly 

available real data sets on VNF chains and traffic that pass 

through VNF chains. In our previous work [8], we evaluated 

the GP approach with randomly generated data (for policies 

and traffic patterns), but going further, for this paper we have 

used more realistic data from previous empirical analyses [32], 

[12] and made some assumptions to derive the required data 

[33]. We developed four programs to model the gathered data 

and generated the required data. The data generating process is 

described in the following sections. All gathered data and data 

modelling programs are publicly available at [34]. 

A. Policy requests 
 

When generating policy requests for the NFC, the main 

factor to be considered is the type (e.g., small, medium, large 

size network) of the enterprise/user, that is requesting the 

policies. Depending on the type of the enterprise/user, the total 

number of VNFs required, the number of VNFs in a policy 

and types of the VNFs in the policy can vary. The policies 

used in our experiments are generated based on a study about 

physical middle-boxes used in enterprise networks [32], which 

includes figures about types of enterprise networks, number 

and types of middle-boxes used in them. For our experiments, 

following statistics given in [32], we have assumed that we 

are going to provide services for 4 large enterprise networks, 

each enterprise network having 100 VNFs. The number of 

VNFs in a policy follows a truncated power-low distribution 

with exponent 2, minimum 2 and maximum 7. Therefore, for 

our experiments, we derive a set of policies for each 

enterprise, where each set of policies have 100 VNFs and 

altogether all the policies of four enterprises have 400 VNFs. 

B. Traffic flows 
 

When simulating traffic, we need traffic data where owners 

(enterprises/users) of the flows can be identified, so that we 

can differentiate the traffic passing through each policy. The 

traffic load that each enterprise/user is expecting can vary 

according to their target applications [35]. We consider web-

based applications and for the traffic, we rely on empirical 

data from previous studies [12]. The data set includes an 

HTTP traffic breakdown of 30,000 users for a day which is 

measured at three different vantage points of an Italian ISP 

over a period of 24 hours. The traffic breakdown reports 

traffic for every 2 hours. We focused on the traffic statistics of 

4 enterprises: Megaupload, LeaseWeb, Level3 and Limelight. 

In a data center, traffic changes happen throughout the day 

and according to the amount of these changes, the VNFs 

should be scaled to satisfy the current traffic demand. A 

limitation of the HTTP traffic data we are using is that, 

information was collected at every two hours. Therefore, the 

first challenge is interpreting the pattern of traffic change over 

two hours. Other studies (e.g., [36]) show that traffic changes 

on usual days happen gradually over time. From times when 

traffic may increase significantly, changes may still increase 

gradually over 15 minutes time periods [37]. As such, 

although sudden traffic changes may occur within few 

minutes, we have assumed a uniform traffic increase/decrease 

over the 2 hours time intervals. To reflect scaling requirements 

of all situations, we spread the increase/decrease of number of 

VNFs (needed for the full 2 hour traffic change) over 2 hours 

and increase/decrease the capacity of one VNF at a time. The 

second challenge is identifying the policies affected by each 

enterprise traffic change. For each enterprise we have x 

number of policies generated and each policy has a unique 

traffic passing through its VNFs. When there is a change in 

total traffic for that enterprise, it is very unlikely that traffic 

passing through all policies of that enterprise contributed to 

the change. Therefore, we randomly select a subset of policies 

from that enterprise, as the policies affected by the traffic 

change. 

C. Scaling 
 

After selecting the policies affected by each enterprise 

traffic change, the first challenge is deciding which VNF from 

each policy, needs to be scaled to satisfy the new traffic 

demands. An earlier study [26] shows that in general no two 

VNFs will be simultaneously and equally bottlenecked and 

scaling one VNF in the policy at a time is the best strategy. 

Hence, assuming the conditions in [26], we randomly select a 

VNF from each policy as the bottlenecked VNF for which the 

resource allocation needs to be increase/decrease. The second 

challenge is, from the identified VNF instance to scale, how 

many instances we should add/remove to satisfy the new 

traffic demand. Here, we are making an assumption: the traffic 
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flowing through the VNF instance is proportional to the 

capacity of the VNF instance and it is the same for all types of 

VNFs. Therefore, the initial capacity unit requirement of all 

types of VNFs is assumed to be the same. Another study [38] 

shows that if we add more than one instance at a time, we are 

usually adding more than what is needed and wasting 

resources. Therefore, we calculated a traffic change threshold 

to find how many instances we should add/remove to 

accommodate traffic change, and as explained in Section VI-

B, we add/remove one instance at a time. This resulted in 42 

significant events over the 24 hours of traffic data. There are 

two types of events: (1) when the traffic change has reached 

the threshold, resources have to be reallocated to 

increase/decrease at least one VNF instance or (2) when the 

traffic change has not reached the threshold, modify the 

bandwidth usages of the links of the paths that were effected 

by the traffic change, to reflect the new traffic amount passing 

by. 
  

 

Figure  1: Architectures used for NFC 

D.  Data center architectures for NFC 
 

We evaluated the performance of the resource allocation 

algorithm assuming three different data center network archi-

tectures for NFC: (1) k fat tree, (2) VL2 and (3) BCube shown 

in Figure 1. A k-ary fat-tree network [13] has three layers: a 

core layer, an aggregation layer and a Top-of-Rack (ToR) 

layer. It consists of (k=2)
2
 core layer switches and k pods of k 

switches, half of them aggregation switches and the other half 

ToR. Each switch in a pod has k ports. The ToR switches are 

at the bottom of the pod, and the aggregation switches in the 

middle. In one pod, each ToR switch is connected to every 

aggregation switch. Each aggregation switch connects to (k=2) 

switches on the core layer. We have used a 4 fat-tree 

architecture, which has 20 switches: 4 pods of 4 switches and 

4 switches in the core layer. For a NFC with 64 servers, 8 

servers are connected to each ToR switch. The network 

consists of 96 links and 13770 paths connecting all source 

destination server pairs with maximum number of hops for a 

path of 6. The VL2 architecture [15] shares many features 

with an k-ary fat-tree architecture, but the main difference is 

the core tier and aggregation tier form a Clos topology: the 

aggregation switches are connected with core one’s by 

forming a complete bipartite graph. We have used a VL2 

architecture with 12 switches. For a NFC with 64 servers, the 

network consists of 88 links and 33760 paths connecting all 

source destination server pairs with maximum number of hops 

for a path of 6. In the BCube architecture [14], servers are 

considered part of the network infrastructure, i.e., they 

forward packets on behalf of other servers. A BCube is a 

recursively defined structure. At the level 0, a BCube0 consists 

of n servers that connect together with a n-port switch. A 

BCubek consists of n BCube(k-1) connected with n
k
 n-port 

switches. We have used a BCube1 architecture where there are 

8 BCube0s, each connected to 8 switches in the next level 

switches and form the BCube1. Each s server of BCube0s is 

connected to switch s of BCube1. For a NFC with 64 servers, 

the network consists of 128 links and 7168 paths connecting 

all source destination server pairs with maximum number of 

hops for a path of 4. 

VII. EVALUATION FOR NEW POLICY 

REQUESTS PROVISIONING 

In this section, we will describe the results of the experi-

ments that were carried out to evaluate the performances of 

GP for one of the main functions of the Resource Manager: 

new policy requests provisioning. Again, all experiments were 

carried out in a machine with an Intel core i3 processor and 

20GB of RAM. As described in Section VI, we assume that 

we are going to provide services for policy requests of 4 large 

enterprises, therefore the Resource Manager has to handle new 

policy requests that consists of a total of 400 VNFs. For our 

experiments, unless explicitly mentioned, we have assumed 

situations where 50% of the NFC servers have to be used to 

allocate resources for policy requests. 

A. Comparison of GP, DFS and Random 
 

The GP approach takes an initial solution as the input to the 

GP process, and tries to improve the given initial solution 

using genetic operations. As explained in Section V, we use 

(1) DFS or (2) a random approach to find the initial solution. 

Therefore, we can use these DFS and random solutions as the 

baseline to compare the solutions given by the GP process 

after 200 gener-ation. First, we carried out experiments (50 

rounds) to compare the quality of the solutions provided by 

DFS and random approaches for large networks. For each 

round of experiment, we derived a fixed set of policies 

(average of 100 policies) that include a total of 400 VNFs and 

try to find solutions with DFS and random in a 128 server 

environment in a 4-fat tree architecture network. We assumed 

that each server has an initial capacity of 1000 units, each link 

has an initial capacity of 3000 units and each VNF requires 

100 server capacity units. Similar to the results observed in 

smaller networks (Section V-C2) and for the same reasons, in 

all the experiment rounds, the initial solutions provided by the 

DFS was better than the random approach. Furthermore, we 

extended our experiments to all three architectures (a 4-fat 

tree, a BCube and a VL2) and explored how the GP process 

improved the initial solution given by DFS over 200 

generations. As the main goal of our optimization is to reduce 

the average link utilization, so that the network is less 

congested and future scaling requirements are minimized, the 

results produced by GP reduced the average link utilization by 

28.7%, 3.2% and 14.9% (compared to the DFS solution) 

respectively for the three architectures. 
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B.  Effect of the number of generations 
 

As explained in Section V, the GP process tries to improve 

the given initial solution by applying genetic operations over 

the generations. To explore how GP process improves the 

initial solution, we conducted 30 round of experiments. For 

each round, we derived a new set of policies (average of 100 

policies) that include a total of 400 VNFs. First, we tried to 

find the initial solutions with DFS, and then improve the 

solution using GP process. We count the times that the fitness 

value was improved during the GP process. We assumed a 128 

server environment in a 4-fat tree architecture where each 

server has an initial capacity of 2000 units, each link has an 

initial capacity of 6000 units and each VNF requires 75 server 

capacity units. The important observation was that most of the 

improvements in the fitness function (52% from total number 

of improvements) happens early on (during first 100 

generations) and after that improvements decrease 

significantly. In fact there were very few improvements after 

400 generations: 6% from the total number of improvements. 

C.  Effect of the number of servers and nodes in the NFC 

 

Figure 2: Factors effecting GP timing: No. of Servers 

To better understand how the GP approach performs for 

large networks, we carried out a set of experiments to 

calculate the total time taken by the GP approach to provide a 

solution for new policy requests provisioning (we used 87 

fixed policy requests that consists of 400 VNFs) in large 

networks. These total times include the time taken by the 

Resource Manager: 

(1) to perform DFS to come up with an initial solution and (2) 

to run the GP process over generations to improve the initial 

solution. With the current implementation of the algorithm, 

most of the steps of the DFS process, such as finding a server 

or a path for a VNF in the policy, are performed in logarithmic 

time (the server capacities are stored in a sorted balanced tree 

and operations to the tree such as searching and updating can 

be done in a logarithmic time). However, in the GP process, 

when we perform a genetic operation and try find an improved 

solution to grow the population, we keep a copy of the original 

solution. We observed that the time taken for the GP process 

is dominated by this copying process. The complexity of 

copying the original solution, depends on the size of data 

structures that store servers and links current usage 

information. In our implementation, a link is represented as a 

connection between two nodes, where a node can be a server 

or a switch of the NFC. Even though it is not necessarily that 

there is a link between each and every node in the network, we 

used an 2D array to store links usage information, with a row 

and a column representing each node of the NFC. The total 

number of nodes in the network depends on two factors: (1) 

the number of servers in the NFC and (2) physical topology of 

the NFC (Section VI-D). When we increase the number of 

servers, the 2D array that stores links usage information grows 

quadratic. Therefore, when we perform genetic operations, 

timing for the process of copying the original solution grows 

quadratic too. 

The effect of total number of servers for the timing was 

examined for three network architectures (4-fat tree, BCube 

and VL2) separately. We conducted 50 rounds of experiments 

from each type and calculated the average. We assumed that 

each server has an initial capacity of 1000 units and each link 

has an initial capacity of 6000 units. We defined the capacity 

requirements of VNFs, in a way that 50% of the server 

capacities is filled. First, in all three types of architectures, the 

timings for DFS process is significantly smaller compared to 

timings for GP process. For a network with 128 servers, 

timings are: (1) 4-fat tree 5489 s, (2) BCube 5204 s and (3) 

VL2 5236 s and growth of the graph with respect to number of 

servers is linear. Second, in all three types of architectures, the 

timings for the GP process is dominated by the process of 

copying original solution during genetic operations. Figure 2 

shows the comparison of time taken for GP process with 200 

generations in different architectures when there are 16, 32, 

48, 64, 80, 96, 112 and 128 servers in the NFC. We observed, 

in all three architectures, the growth of the graph is quadratic 

with respect to the number of servers and when they are 

plotted in the same figure, three graphs fall on top of each 

other. Fitting the plots into a quadratic polynomial of the form 

―p1 x
2
 +p2 x+p3‖, we get within the 95% confidence bounds 

the coefficient p1, for k-fat tree to be 6.107 (varying from 

4.661 to 7.553), BCube to be 5.948 (varying from 5.431 to 

6.465) and VL2 to be 3.972 (varying from 2.308 to 5.637). 

As we mentioned earlier, the total number nodes in the 

network depends on two factors: the number of servers and the 

physical topology. In a situation where there are fixed number 

of servers in the NFC, the total number of nodes in the NFC 

will depend on the physical topology. Therefore, the timings 

for the GP process with a fixed number of servers in different 

network architectures will vary, depending on the total number 

of nodes. We explored the time taken for GP process with 200 

generations in different architectures with respect to different 

number of nodes when there are 16, 32, 48, 64, 80, 96, 112 

and 128 servers in the NFC. In all three architectures, the 

growth of the graph is quadratic with respect to the number of 

nodes in the network and when they are plotted in the same 

figure, three graphs fall on top of each other. 

D.  Effect of the state of the NFC 
 

To better understand the effect of the state of the NFC, to 
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the improvements to the solution during the GP process, we 

carried out 10 set of experiments in four types of 128 server 

environments of a data center with a 4-fat tree architecture 

network: (1) an environment where 80% of the server and 

links capacity is full: Very tight (2) an environment where 

only 70% of the server and links capacity is full: Tight, (3) an 

environment where only 50% of the server and links capacity 

is full: Medium and (4) an environment where only 30% of the 

server and links capacity is full: Loose. We assumed that each 

server has an initial capacity of 1000 units and each link has 

an initial capacity of 6000 units. We used 92 fixed policy 

requests that consists of 400 VNFs. We count the times that 

the fitness value was improved during the GP process. The 

first observation is that, in all types of environments, most of 

the improvements (80% from total number of improvements) 

in the fitness function happens early on (during first 100 

generations), and after that improvements decrease 

significantly. The second observation is that, the environments 

with loosely tight resource availability get more improvements 

(33% from total number of improvements) than tighter 

environments (15% from total number of improvements). 

E.  Effect of the order of policy requests 
 

Since we are processing policies in a new provisioning 

request sequentially, we needed to check the impact of the 

order policies in the results. We used fixed 83 policies that 

includes 400 VNFs and processed them in 100 random orders 

for an environment of 128 servers in a 4-fat tree architecture. 

Our results showed that the order of the policies does not 

impact the quality of the solution. Only five different fitness 

function values were obtained with an average value of 1.072 

and a standard deviation of 0.0058. 

VIII. EVALUATION FOR SCALING OF 

EXISTING POLICY REQUESTS 
 

The second responsibility of the Resource Manager is to 

find online configuration solutions to implement dynamic 

scaling requirements of existing policy requests, according to 

the traffic changes. The following section describes the 

performance evaluation of the GP approach when handling 

these dynamic re-allocation of resources in a NFC with 128 

servers. As in the previous section, for our experiments, unless 

explicitly mentioned, we have assumed situations where 50% 

of the NFC servers have to be used. 

A.  Effect of the scaling approach used 
 

Scaling of a VNF instance can be done in two ways: (1) 

vertical or (2) horizontal. Vertical scaling is allocation/release 

of host and bandwidth resources to/from a VNF instance, 

whereas horizontal scaling is installation/removal of VNF 

instances or paths. Vertical scaling is a basic feature of VMs, 

which adjusts logical partitions of multiple metrics (i.e. CPU, 

Memory, Bandwidth). So vertical scaling of VNFs can be 

done adjusting the existing VNF instance with new metrics 

of capacities for CPU, Memory and Bandwidth. However, 

horizontal scaling changes the number of VM instances, which 

involves running VNF instances on two or more separate VMs 

hosted on the same or different servers. We assumed a 

scenario where traffic flow has increased and we have to 

allocate more server and bandwidth resources (extra 

resources). For the vertical scaling based approach, first we 

check whether the server and the path, that is currently used 

by the existing VNF instance, can handle the total resource 

requirement. If yes, then we do not need to change the current 

network configurations (we can use the same path), and we 

can perform vertical scaling for the existing VNF. If not, we 

search for a new server and a path that can handle the total 

resource requirement. In this case, we need to perform a live 

migration of the VNF [39] and change the current network 

configurations to redirect traffic to the new path, which causes 

more changes than performing the vertical scaling. For the 

horizontal scaling, we check for a server and a path that 

supports the extra resource requirement, to add a new VNF 

instance. It doesn’t matter whether we can use the original 

server and path (server and the path that is currently used by 

the existing VNF instance), with the horizontal scaling, we 

have to add a new VNF instance and configure a new path to 

the instance. Therefore, it definitely causes changes in servers 

and paths. 

There are two different aspects to look at when deciding 

which method to use: (1) selecting a configuration solution 

based on the fitness function and (2) selecting a configuration 

solution considering the real implementation. When selecting 

a configuration solution based on the fitness function, there 

are two possible scenarios. First, we give more weight to 

reduce changes to current configurations. For this, vertical 

scaling is appropriate because if we can allocate/release host 

resources from/to the VNF in the same server where the 

existing VNF instance resided, this method does not cause 

changes to the currently configured path. So the number of 

links changes are zero. On the other hand, with horizontal 

scaling, even though we may be able to install/remove VNFs 

instances in the same server where the existing VNF instance 

resided, we have to install paths to the new VNF instance or 

remove paths from the additional VNF instance. Therefore, it 

causes changes to the links and it is counted in the fitness 

function. Second, if we give more weight to reduce links 

congestion, the horizontal scaling is appropriate because, 

instead of all traffic going to a single instance and links getting 

congested, traffic can be distributed to both instances and 

routed through more paths. With our fitness function where 

we have equal weight for all parameters, we conducted 20 

experiments assuming a data center with a 4-fat tree 

architecture network where each server has an initial capacity 

of 1000 units, each link has an initial capacity of 3000 units 

and each VNF initially requires 100 server capacity units. For 

each round of experiments, we have used a fixed set of policy 

requests that consists of 400 VNFs as the initial policy 

requests and carried out scaling out with both methods 

separately. In 70% of the experiments both methods gave the 

same fitness value while in 30% of the experiments, the first 
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method gave better fitness values. We have observed that this 

is because, when the current server and path of the existing 

VNF instance can handle the total resource requirements, 

vertical scaling can be performed and therefore no changes 

introduced. 

When selecting a configuration solution considering the real 

implementation, existing work has shown that each of the 

aspects has advantages as well as disadvantages [38]. Vertical 

scaling is better than horizontally scaling because: (1) needs 

less time for reconfiguration as it needs only metrics 

adjustment, (2) does not need additional software licenses, (3) 

does not affect the quantity of VNF instances and (4) does not 

introduce a coordination or a traffic distribution among 

multiple VNF instances. However, vertical scaling is limited 

by capacity of the server or link, because it cannot increase the 

resources more than the maximum capacity. Also, the con-

solidation after vertical scaling is more complicated because 

the fragments caused by it are likely to be irregular. Hence, the 

cost of migration caused by vertical scaling is higher than 

horizontal scaling. However, as the vertical scaling based 

method gave better results in terms of the fitness function, we 

have used it for rest of the experiments in the paper. 

B.  Effect of the number of VNFs scaling 
 

To better understand how the NFC behaves when handling 

different number of VNFs scaling out simultaneously, we 

carried out 4 sets of experiments (30 rounds from each): 

(1) 30 VNFs were scaling out simultaneously, (2) 20 VNFs 

were scaling out simultaneously, (3) 10 VNFs were scaling 

out simultaneously, and (4) 2 VNFs were scaling out simulta-

neously. We have assumed a 4-fat tree architecture with 128 

servers, where each server has an initial capacity of 1000 

units, each link has an initial capacity of 3000 units and each 

VNF initially requires 100 server capacity units. For each 

round of experiments, we have used a fixed set of policy 

requests that consists of 400 VNFs as the initial policy 

requests. We count the times that the fitness value was 

improved during the GP process. The observation is that there 

is little benefit in running the GP process when the number of 

VNFs scaling simultaneously is small. The number of 

improvements when 2 VNFs were scaling was 6% from total 

number of improvements. One can avoid running the GP 

process and use directly the DFS solution. As the number of 

VNFs scaling simultaneously increases, the potential gains 

provided by the GP optimization also increases. The number 

of improvements when 30 VNFs were scaling was 41% from 

total number of improvements. In all cases, most of the 

improvement in the fitness function (66% from total number 

of improvements) happens early on (during first 100 

generations), and after that the improvements decrease 

significantly. 

C.  Effect of the local approach 
 
Although the ―global approach‖ where we are allowed to 

change configurations of any policy of NFC during the genetic 

operations, may provide better resource allocations, the 

solutions may require drastic re-arrangements of the current 

configurations, hence making them impractical in real 

scenarios. However, we can use this method to provide us 

with a baseline to compare against a ―local approach‖ where 

we limit changes to configurations of policies that are scaling. 

We conducted experiments for both GP based global and local 

approaches to compare performances with respect to the 

resource allocation efficiency over several days. We repeated 

the data for single day (we derived 42 significant events over 

the 24 hours of traffic data [see Section VI-C]) for two times 

to get the data to emulate 2 consecutive days, and therefore we 

had total of 84 events for 2 days. The global approach is 

considered as the baseline i.e., the minimization of the 

parameters relevant to server and links usage. For the local 

approach, we explored 2 cases. First, we considered a situation 

where all parameters of the objective function are considered: 

minimizing resources and changes (all the weights in the 

Equation 3 are 1) and we call it ―local 1‖. Second, we 

considered a situation where only the parameters relevant to 

changes are considered: ―local 2‖ (w1 = w2 = w3 = 0 and w4 

= w5 = 1). The local 2 strategy represented the scaling 

solutions that in theory minimally disturb the traffic (e.g., 

packet drops, latency), because it tried to minimize the 

changes to the servers and links. 

 

Figure 3: Fitness value comparison: KFat tree architecture 

 

Figure 4: Server changes comparison: KFat tree architecture 
 

Once the solutions have been provided for the 84 events by 
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the global and two local approaches, we manually calculated 

the value of the each fitness function of the provided solutions, 

assuming that changes do not count (i.e., w4 = w5 = 0) and 

compared the global and local approaches. For each set of 

experiments, we have used a fixed set of policy requests that 

consists of 400 VNFs. We have assumed a 128 server 

network, where each server has an initial capacity of 1000 

units, each link has an initial capacity of 3000 units and each 

VNF requires 100 server capacity units. The fitness value 

comparison (an average from 5 sets of experiments) for 2 

consecutive days for a 4-fat tree architecture network is shown 

in figure 3. The global approach produced solutions with 

better resource allocations than the other two. Furthermore, 

the figure clearly shows that approaches (2) and (3), followed 

essentially the same behavior (modulo a translation in the y 

axis) that the behavior of the baseline (1), if we smooth the 

curves. 

A comparison of server changes needed in the configuration 

solutions (an average from 5 sets of experiments) given by (1) 

global approach, (2) local approach 1 and (3) local approach 

2, after processing each event is shown in the Figure 4. As 

expected, the global approach caused the largest number of 

changes. The solutions given by the local approaches had 

fewer server changes from their previous configuration 

because the local approaches performed genetic operations 

only on the partial solutions that are scaling. The interesting 

observation was that, most of the time both local approaches 

had the same number of server changes, making the two 

methods essentially the same. We have noted that these server 

changes are the unavoidable changes due to the scaling 

requirements, and not necessarily caused by the genetic 

operations. In addition, similar to the server changes, we have 

observed that the solutions given by the global approach has 

most links changes from their previous configuration. Most of 

the time both local approaches have the same number of links 

changes. As shown earlier, local approach 1 (which 

additionally minimizes usage of servers and links congestion) 

gave better fitness values than local approach 2. Therefore, 

local approach 1 provided solutions with better server and 

network resources utilization without making many changes. 

Although we have included the local approaches comparison 

results only for a 4-fat tree architecture network because of the 

limited pages, we have observed that this behaviour is the 

same for the other two architectures: BCube and VL2. 

Therefore, in the rest of the experiments, we have used only 

local approach 1. 

D.  Effect of the NFC architecture 
 

Going further, we have compared the behaviour of local ap-

proach 1 with global approach for other architectures: BCube 

and VL2 architectures for 2 consecutive days. The fitness 

values (an average from 5 sets of experiments) for BCube and 

VL2 architectures for 2 consecutive days are shown in Figure 

5 and 6 respectively. As mentioned earlier, for each set of 

experiments, we have used a fixed set of policy requests that 

consists of 400 VNFs. We have assumed a 128 server 

network, where each server has an initial capacity of 1000 

units, each link has an initial capacity of 3000 units and each 

VNF requires 100 server capacity units. Similar to the 4-fat 

tree architecture, the global approach produced solutions with 

better resource allocations than the local approach for BCube 

and VL2 architectures. Also, they followed essentially the 

same behaviour (module a translation in space) of the global 

approach: the baseline. In the results of all three architectures, 

during most of the scaling events of each day, the fitness 

values grew. The reason is, in the traffic model we are using, 

the traffic is increasing until late night of each day. 

We have observed that each architecture’s fitness values are 

effected by different parameters of the fitness function. For all 

three architectures, number of links used and links utilization 

made the difference in the fitness values and the number of 

servers used were very similar. In the BCube architecture, the 

difference between local and global approaches was due to the 

fact the local approach always used fewer links than the global 

approach. While the global approach freely used more links 

over time, the local approach hesitated to use more links 

because we were trying to minimize number of server and 

links changes in the local approach. Therefore, the solutions 

given by the local approach were more congested than the 

solutions given by the global approach. In the VL2 and 4-fat 

tree architectures, the number of links used was similar for 

both the local approach and the global approach, while the 

difference was on link utilization. When considering the 

fitness values increase for each day, the VL2 architecture’s 

fitness values for the local approach increased fast with 

respect to the 4-fat tree and BCube. In the VL2 architecture, 

servers are located in a more compact manner and it has fewer 

paths between servers inside the same pod. Therefore, the 

links got more congested, and when traffic was increasing the 

link utilization also increased fast. The 4-fat tree architecture 

has more paths and therefore the servers were not compact. It 

tried to use more links and made the links less congested. 

Hence, the 4-fat tree architecture had more smooth effect on 

the parameters of the fitness function. 

IX. FINAL REMARKS 
 
In this paper we present a comprehensive analysis on the 

proposed GP based resource allocation algorithms for: (1) new 

VNFs provisioning and (2) scaling of existing VNFs with the 

traffic changes. We compared the GP approach with 

traditional resource optimization technique: ILP for a small 

network and explored the evolution of the GP based algorithm 

for large networks, over a full day traffic patterns based on 

more realistic data. The results showed that generating 

solutions even for 10 VNFs in a relatively small network (16 

servers), ILP can take hours while GP takes only few 

milliseconds. Furthermore, although GP may not provide the 

optimal solution, GP can decide the computing and network 

allocations for hundreds of policies (around 400 VNFs) in a 

128 server environment and find reasonable solutions on the 

order of milliseconds. Moreover, our results showed that the 

GP process provided an average objective value improvement 
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percentage up to 7.87% over the initial solution (the baseline) 

with a reduction of average link utilization up to 28.7% for the 

three architectures (a 4-fat tree, a BCube and a VL2). In the 

evaluation of the algorithms over the time, our results showed 

that, a ―local approach‖ provides reasonable solutions with 

lesser changes to the current configurations, and moreover, it 

does not diverge from the ―global approach‖ solutions over 

time. 

 

Figure 5: Fitness value comparison: BCube architecture 

 

Figure 6: Fitness value comparison: VL2 architecture 

In this paper, for both initial policy requests provisioning 

and scaling, we have considered policies with chains of VNFs, 

and assumed that one VNF can have only one successor VNF. 

However, we can easily extend our ILP model to facilitate 

general policies that can be represented with Directed Acyclic 

Graphs (DAG), where one VNF can have more than one 

successor VNF, and the VNF might need more than one path 

assigned to it so that its traffic can be directed to the 

successors. We can use a constant to define the required 

number of paths to route traffic to its successor(s) and modify 

the constraint 2c in the Section IV to reflect the required 

number of paths. Furthermore, we have evaluated the 

behaviour of the scaling out/in resource allocation algorithm, 

with fitness functions that considered the number of servers 

used, links used, links congestion, number of server changes 

and links changes. There are many other linear and non-linear 

factors that might affect the NFC: traffic lost, delay, cost of 

VNFs software license [22] and power consumption. 

Therefore, we need to look for more approximation algorithms 

that can cope with linear and non linear objective functions. 

As the future work, we are planning to explore the feasibility 

of using the concept of meta heuristics in operation research, 

namely the Iterative Local Search (ILS) approach which is one 

of the most popular single solution based meta-heuristics. We 

are planing to compare the performances of the ILS approach 

with GP and ILP approaches. Also, for a fairer comparison 

with ILP, we are thinking of an approach to include a warm 

start for the ILP. 
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