
 International Journal on Applications in Information and Communication Engineering

Volume 4: Issue 1: March 2018, pp 29 - 43. www.aetsjournal.com ISSN (Online) : 2394 - 6237

-- --

29



Abstract— With the introduction of Network Function Virtual-

ization (NFV) technology, migrating entire enterprise data centers

into the cloud has become a possibility. However, for a Cloud

Service Provider (CSP) to offer such services, several research

problems still need to be addressed. In previous work, we have

introduced a platform, called Network Function Center (NFC), to

study research issues related to Virtualized Network Functions

(VNFs). In a NFC, we assume VNFs to be implemented on virtual

machines that can be deployed in any server in the CSP network. We

have proposed a resource allocation algorithm for VNFs based on

Genetic Algorithms (GAs). In this paper, we present a com-

prehensive analysis of two resource allocation algorithms based on

GA for: (1) the initial placement of VNFs, and (2) the scaling of

VNFs to support traffic changes. We compare the performance of the

proposed algorithms with a traditional Integer Linear Programming

resource allocation technique. We then combine data from previous

empirical analyses to generate realistic VNF chains and traffic

patterns, and evaluate the resource allocation decision making

algorithms. We assume different architectures for the data center,

implement different fitness functions with GA, and compare their

performance when scaling over the time.

Keywords— Network Function Virtualization (NFV), Cloud Re-

sources Optimization, Genetic Algorithms.

I. INTRODUCTION

etwork Function Virtualization (NFV) [1] is a promising

technology that proposes to move packet processing from

dedicated hardware middle-boxes to software running on

commodity servers. As such, NFV brings the possibility of

outsourcing enterprise Network Function (NFs) processing to

the cloud. When an enterprise outsources its NFs to a Cloud

Service Provider (CSP), the CSP is responsible for deciding:

(1) where initial Virtual NFs (VNFs) should be instantiated,

and (2) what, when and where additional VNFs should be

instantiated to satisfy changes in the traffic (scaling) with

minimal impact on network performances.

Existing work on cloud resource allocation for VMs are not

suitable for cloud resource allocation for VNFs. Optimizing

M. Padmavathi , Final Year ME-Cse, Meenakshi Ramaswamy Engineering
College, Thathanur, Tamilnadu, India

M. Prabhu , Final Year Me-Cse, Meenakshi Ramaswamy Engineering

College, Thathanur, Tamilnadu, India
S. Ponnuthurai , Assistant Professor, Meenakshi Ramaswamy Engineering

College, Thathanur, Tamilnadu, India

the placement of VMs in a cloud tend to be node-centric as

VMs are end-points. Optimizing the placement of VNFs is, in

contrast, network-centric: their provisioning normally involves

service chains of VNFs rather than individual VNFs. The

placement of a service chain requires allocation of server

resources (for the VNFs), as well as allocation of network

resources (paths) to route traffic flow from one VNF to next

VNF in the chain, within the cloud. Furthermore, most of the

existing work on placement of VNFs, consider only a part of

the problem, by optimizing either host or bandwidth resource,

but do not provide an integrated view of computation, storage

and networks optimization [2]. Despite some initial efforts [3],

[4], [5], the dynamic resource allocation for scaling VNFs

presents still many open challenges. One of the challenges is

how to achieve scaling, i.e., whether to use horizontal (i.e.,

installation/removal of VNF instances), or vertical scaling

(i.e., allocation/release of host and bandwidth resources

to/from a VNF instance) or both. A second challenge is how to

resolve potentially conflicting optimization objectives: for

instance, re-allocating resources in a way that minimizes

changes to current configuration, and therefore minimally

disturbes current net-work activities, and at the same time

optimize usage of server and network resources [6].

In this paper we argue that mixed Integer Linear Program-

ming (ILP), traditionally used to optimize VM allocation and

network management in cloud data centers [7], is not suitable

for online scaling of VNFs in response to traffic changes. This

is because solving ILP problems can take hours [8]. Instead,

one can find suitable approximation algorithms for the

optimization. In previous work [8], we started to investigate

our hypothesis, by proposing two new resource allocation

algorithms, based on Genetic Programming (GP), for the

initial placement of VNFs, and the scaling of VNFs to support

traffic changes. Similar to recent work in data centers [9], to

make more efficient utilisation of the NFC resources, our

approach allows both computing resources and network

config-urations to be managed concurrently and assumes a

Software-Defined/OpenFlow infrastructure [10] to easily

reconfigure the physical network. In this paper, we provide a

more in-depth analysis. Building upon our previous results [8],

[3], we present an improved version of our GP resource

allocation algorithms that use more effective genetic

operations, conduct an extended evaluation of these

algorithms, and discuss a comprehensive analysis of their

performance. The specific contributions of the paper are as

 M. PADMAVATHI , M. PRABHU , S. PONNUTHURAI

 ,

OPTIMIZING RESOURCE ALLOCATION FOR

VIRTUALIZED NETWORK FUNCTIONS IN A

CLOUD CENTER USING GENETIC

ALGORITHMS

N

 International Journal on Applications in Information and Communication Engineering

Volume 4: Issue 1: March 2018, pp 29 - 43. www.aetsjournal.com ISSN (Online) : 2394 - 6237

-- --

30

follows.

First, we define the Network Function Center Resource

Management Problem (NFCRMP) as a set of ILP equations.

They address both (1) the resource allocation for new VNFs

provisioning, and (2) the resource allocation for the scaling

of existing VNFs to support traffic changes. In the context of

resource allocation for new VNFs, the goal is to minimize the

required resources (i.e., number of servers, number of links,

and average link utilization). In the context of resource

allocation for scaling of existing VNFs, the aim is to adjust the

resources to satisfy the traffic changes and, at the same time,

minimize the number of configuration changes to reduce

potential service disruptions, and performance degradation.

We developed algorithms to solve the NFCRMP using both a

GP and an ILP approach.

Second, we implemented the ILP formulation of the

NFCRMP in CPLEX [11] and implemented the approximation

algorithms using GP, and compared their performances for

small networks. We ran experiments where the objective con-

sisted in deploying a set of new VNF chains, and considered

VNF chains with 10 VNFs and 20 VNFs in a 4 server

environment. In both cases, the GP gave the exact optimal

solution as ILP. When we increase the number of servers to

16, GP was able to find solutions fast (average of 47

milliseconds), while the ILP implementation ran for nearly 6

hours, and even crashed without finishing correctly. The

results confirm that the time to solve ILP problems renders

ILP not suitable for the online deployment and scaling of

VNFs, and suggest that the GP generated solutions can

provide optimal – or close to optimal – solutions in

significantly shorter amount of time, which is more suitable to

the NFCRMP problem.

Third, we present a comprehensive evaluation of the pro-

posed GP approach for large networks. We ran experiments

both for the deployment of new VNF chains, and for the

scaling of existing VNF chains, using realistic traffic pat-terns

[12]. We considered three network architectures: (1) a k-fat

tree architecture [13], (2) a BCube architecture [14], and (3) a

VL2 architecture [15]. As the GP process relies on an initial

solution, we used simple Depth First Search (DFS) and

random approaches to find an initial solution, and considered

this solution as the baseline to compare solutions given by GP

process after 200 generations. Our results showed that the

performance of the algorithms highly depends on the network

architecture, as each network architecture has a different num-

ber of nodes. The GP process provided an average objective

value improvement of up to 7.87% over the initial solution

(the baseline) which results in reductions of the average link

utilization of up to 28.7%. Furthermore, our results showed

that the GP algorithm can decide server and network

allocations for hundreds of policies (around 400 VNFs) in a

128 server environment and find reasonable solutions in

milliseconds.

Fourth, we study the quality of the GP generated solutions

over time. Whenever we need to reallocate resources to scale,

we adopted a ―local approach‖ to find solutions, where we

limit the resource re-allocation only to policies affected by

traffic change. These ―local approach‖ solutions may

gradually diverge from the optimal solution of a ―global

approach‖ solu-tion given that the local approach solutions

strive to minimize not only the required resources, but also the

number of changes in the network. We compared the solutions

computed by the GP approach with its ―global approach‖

solutions, generated by ignoring the need to minimize the

number of changes in the network. Our results showed that,

although the ―global approach‖ provides better resource

allocations, the solutions require drastic re-arrangements to the

current configurations, and therefore is impractical in real

scenarios. In contrast, ―local approaches‖ provide reasonable

solutions with lesser changes to readjust configurations,

without diverging from the ―global approach‖ solutions over

time.

The rest of the paper is organized as follows. Related work

is presented in Section II. Section III gives a brief description

of our experimental NFV platform and its management

system, the Network Function Center (NFC). Section IV

describes the formulation of Network Function Center

Resource Manage-ment Problem (NFCRMP) as a set of ILP

equations for new VNFs provisioning and dynamic scaling.

Section V describes the GP based resource allocation

algorithms implementations and a performance comparison

between ILP and GP. Section VI describes our experimental

set-up. Sections VII and VIII show the results of a

comprehensive performance evaluation of GP based resource

allocation algorithms. Our final remarks can be found in

Section IX.

II. RELATED WORK

Traditionally Integer Linear Programming (ILP) has been

used in cloud resource allocations to optimize VM allocation

and network management [7]. However, this approach can be

applied only if adjustments to traffic demands are made in the

order of hours [8]. Finding an optimal allocation is com-

putationally hard [16]. Hence, more practical solutions look

for approximations. There have been several recent studies on

optimizing orchestration and placement of VNFs using

heuristic based approaches. Provisioning requests from

cloud’s users involves service chains of VNFs instead of

single VNFs [17], [18], [19], [20]. The placement of these

VNF chains in physical machines and use of the network

bandwidth are therefore crucial for performance of a NFC

[21].

Most of the existing solutions focus on the initial placement

of VNFs in the cloud, striving to minimize the number of

VNFs instances used in the cloud, and possibly an overall

network cost, using heuristics based resource allocation algo-

rithms [22], [23], [24], [16], [25], [8], [3], [26], [27], [28].

Those existing solutions assume that a VNF instance can be

shared across policies. In contrast, our work on initial

placement of VNFs explores a different angle of the problem:

we assume that a given VNF instance is dedicated to a single

policy. This assumption is to provide tenant isolation.

 International Journal on Applications in Information and Communication Engineering

Volume 4: Issue 1: March 2018, pp 29 - 43. www.aetsjournal.com ISSN (Online) : 2394 - 6237

-- --

31

To offer infrastructure resources for client’s traffic on an

on-demand basis, following the initial placement, VNFs may

need to be rescaled over time. The work on scaling of VNFs is

limited [3], [4], [5]. Similarly to the initial placement problem,

existing solutions for scaling also look for approximations. Li

et al. works with VNF chains and solves the initial placement

problem by iterating over initial input chains [4]. Scaling is

achieved by duplicating full instances of VNF chains and the

optimization is very dependent on the datacenter architecture.

Milad et al. optimizes one VNF at a time, independent of the

order of the VNFs in the VNF chain. In addition, the proposed

solution performs a local optimization, as they do not consider

optimizing the placement of full VNF chain [5]. In contrast,

our model takes a middle approach: we consider chains of

VNFs and assume that in a chain the increase of resources

demand is likely to happen in isolated VNFs. However, we

perform the optimization in the context of the full chain. We

optimize server and bandwidth utilization as well as the cost

of making modifications. Furthermore, our approach does not

depend on the datacenter architecture.

III. OVERVIEW OF EXPERIMENTAL

PLATFORM: NETWORK FUNCTION

CENTER (NFC)

We are building an experimental platform, called Network

Function Center (NFC), to study management issues related to

the combined management of VNFs. The architecture and the

complexity of our experimental NFC platform are simpler

than those defined by existing standardization bodies (e.g.,

ETSI, IETF) [1]. This simplification allows us to focus on

specific research aspects and conduct experiments. Contrary to

traditional NFs that are hardware based middle-boxes,

deployed at specific locations in the network, the NFC

assumes a NF to be implemented by a VM that can be

deployed in any server in the Cloud Service Provider network.

In this section, we briefly describe the functionality we expect

from a NFC and the proposed architecture.

We assume that the NFC delivers VNFs as a service to

clients on a subscription basis. To receive services from a

NFC, a client needs to provide the following specifications:

(1) the types of required VNFs, and interconnectivity

between them (policy), (2) the ingress and egress locations of

client’s traffic flow, and (3) the initial expected traffic load to

be processed by these VNFs. Once the client request is

accepted by the NFC, the client’s traffic is redirected to the

NFC to traverse the VNFs. The NFC must guarantee that the

client’s traffic traverses all the VNFs in the correct order.

However, traffic may change over time, when compared to the

initial expected traffic load provided by the client. Therefore,

the client can request for a flexible service level agreement

where for example, the infrastructure resources are adjusted to

satisfy the traffic changes and demands. The NFC is expected

to scale resources (horizontally or vertically) to handle the

traffic changes according to the agreements with the client.

The NFC consists of two main components: a physical

infrastructure, and a management system for the infrastructure.

The physical infrastructure comprises a network and a server

infrastructure. The network infrastructure provides connectiv-

ity for all communications occurring in the NFC and between

the NFC and its users. The server infrastructure hosts all

VNFs. Servers in the NFC are used to deploy the virtual

machines (VMs) where the VNFs run. A NF is implemented

as a software on a VM. The NFC should configure its network

to route traffic flow from one VNF to the next VNF of the

policy (to its successor), according to the order given in the

policy.

The goal of the NFC Management system is to automate

arrangement, coordination and management of NFC compo-

nents to satisfy the maximum number of client requests with a

specified level of QoS. The NFC Management System is built

around five key modules: (1) Resource Manager, (2) Topology

Manager, (3) Flow Manager, (4) Elasticity Manager and (5)

Rules Generator. The Topology Manager is responsible for

maintaining the state of the physical infrastructure of the NFC.

This includes information about current network information

(i.e, server and link utilization information) and topology data

(i.e, network architecture). Once a new client request is

submitted, the Resource Manager module considers current

network information and topology data (provided by the

Topology Manager) in addition to the constraints such as

maximum capacity of servers and links, and takes decisions on

the placement of VNFs and the paths for the client’s traffic to

follow inside the NFC. The Resource Manager is also called

by the Elasticity Manager. The Elasticity Manager monitors

the resource’s utilization and takes decisions on when to scale

resources for the traffic changes. The Resource Manager then

determines the re-allocation of server and network resources

to satisfy the new demands based on the current network

infor-mation, topology data and constraints. The Flow

Manager, and Rules Generator configure the network

according to decisions taken by the Resource Manager and

Elasticity Manager. More details of the architecture of our

NFC can be found in [8].

IV. NETWORK FUNCTION CENTER

RESOURCE MANAGEMENT PROBLEM

(NFCRMP)

The Resource Manager module has two responsibilities:

1) New policy requests provisioning: upon receiving a new

set of policies, the Resource Manager takes into account

the physical network, servers constraints, and already

allocated resources, to identify the resources where to

instantiate the VNFs of the new policy;

2) Scaling of existing policy requests: upon receiving scal-ing

requests from the Elasticity Manager, the Resource

Manager decides the re-allocation of resources in order to

satisfy traffic changes.

In the following section, we formalize our problem, the

Network Function Center Resource Management Problem

(NFCRMP), as a set of ILP equations for (1) resource alloca-

tion for the new policy requests provisioning, and (2) resource

 International Journal on Applications in Information and Communication Engineering

Volume 4: Issue 1: March 2018, pp 29 - 43. www.aetsjournal.com ISSN (Online) : 2394 - 6237

-- --

32

allocation for the scaling of existing policy requests to support

traffic changes. For the new policy requests provisioning, the

NFCRMP aims at minimizing the required server and network

resources (e.g., average link utilization.) For the scaling of

existing policies, in addition to minimizing the required server

and network resources, the NFCRMP also aims at minimizing

the number of changes in server and links configurations.

Table I provides a description of the key notations used in

NFCRMP.

A. New policy requests provisioning

We consider a NFC with M servers and L links. A link l

connects a server to a switch, or a switch to another switch.

The amount of resource capacity of server m is denoted Hm,

and the network capacity of link l is denoted Kl. A path p

between two servers (a source and a destination server pair), is

composed by two or more links. P denotes the set of the

shortest paths between all source and destination server pairs

in the NFC. Given a path p (in P) that connects server m1 and

m2, Qp represents the source server (m1), and Rp represents

the destination server (m2). The variable El
p
 indicates whether

link l is used on path p. As explained in Section VI-D, the

definition of the shortest path can vary based on the network

architecture type, as each of them have different default

maximum hop count for a path between two servers.

TABLE I - SUMMARY OF KEY NOTATIONS

The number of VNFs running in the NFC is denoted by N.

Each VNF n is characterized by its resource requirements:

(1) the required server capacity (Sn), and (2) the required

bandwidth: the expected amount of the traffic flow (Bn). For

each VNF n in the requested policies, we find a server to place

the VNF. The server must support the physical resource

requirements of the VNF. Also, if the VNF is not the last VNF

of the policy chain, we find a path to route the traffic of the

VNF to its successor in the policy chain. The successor is the

next VNF(s) according to the sequence in the policy chain.

Links in the selected paths should support the bandwidth

requirements of the VNF.

We define Zn
m
 to be a binary variable for placing VNF n on

server m, such that, if VNF n is placed on server m, then Zn
m

 =

1, otherwise it is 0.

Let Gm 2 f0; 1g be a binary variable indicating whether

server m is used in a configuration solution. Therefore, the

total number of servers used in a configuration solution is:

The traffic flow of VNF n to its successor is represented by

the vector Bn. To configure the routing between VNF n and its

successor, we need to find a path in P , joining the servers

where VNF n and its successor reside. Therefore, we define

A
p
n to be a binary variable that indicates if path p is used to

route traffic between VNF n and its successor, such that, if

traffic of n to its successor is routed on path p, then A
p

n = 1,

otherwise it is 0.

Let Fl 2 f0; 1g be a binary variable indicating whether link l

is used in a configuration solution. Therefore, the total number

 The NFC Management System takes decisions on new

policy requests provisioning, with the goals of minimizing the

average link utilization and the number of servers used. We

assume that if a VNF has to be placed on a server, then the

server has to be switched on and the server is considered as a

server that is in use. Therefore, we want to minimize the

number of servers used, so that the already switched on

servers, can be utilized efficiently. Furthermore, as the NFC

network has more than one path between most of the (source,

destination) server pairs, and these paths mostly use different

links, the NFC Management System tries to maximize the

number of used links, so that the system is encouraged to use

different paths to route traffic between each (source,

destination) server pair. This results in distributing traffic over

different paths, and reducing the average link utilization. We

highlight that since U is an average, we normalize the

following optimization function by considering the number of

servers M, and links L, and introduce weighting factors w1;

 International Journal on Applications in Information and Communication Engineering

Volume 4: Issue 1: March 2018, pp 29 - 43. www.aetsjournal.com ISSN (Online) : 2394 - 6237

-- --

33

w2; w3 to allow operators to tune the trade-offs between the

optimization factors. The NFCMP can be explained as the

following constrained optimization:

Minimize

Constraints (2a) and (2b) model the server resource con-

straints of the NFCMP. Constraint (2a) guarantees that each

VNF in a policy is placed on one and only one server.

Constraint (2b) guarantees that, for each server, if the server is

used (captured by Gm), then the total capacity consumed by all

VNFs placed on the server does not exceed the total capacity

of that server. Constraints (2c) to (2g) model the network

resource constraints of the NFCMP. If a VNF is not the last

VNF of a policy, constraint (2c) guarantees that the VNF has a

path to its successor. Constraint (2d) guarantees that for each

link, if the link is used (captured by Fl), then the total

bandwidth consumed by the VNFs does not exceed the total

bandwidth of that link. Since we are maximizing ―the number

of links used‖ in the objective function, constraint (2e)

guarantees that a link is counted as ―used‖, only if it is actually

used in the configuration solution. Constraints (2f) and (2g)

guarantee that the path selected for a VNF to send traffic to its

successor, starts from the server where the VNF resides

(source server), and ends in the server where the VNF’s

successor resides (destination server).

subject to

B. Scaling of existing policy requests

In the scaling situations, the optimization needs to consider

the current configurations of the system, so that we can

minimize the disturbances to the existing traffic flows when

implementing the solutions provided by the optimization to

satisfy the new traffic changes. Therefore, while trying to

minimize the link utilization, and required servers in the

optimization process, we also try to minimize the changes to

the current system. We use additional variables to represent

the previous state of the NFC, i.e., the state of the NFC before

scaling. N
0
 , M

0
 , L

0
 and P

0
 represent the number of VNFs,

number of servers, number of links and number of paths in the

state before the scaling. (El
p
)

0
 , (Zn

m
)

0
 and (A

p
n)

0
 represent

whether link l is used on path p, the binary decision for

placing n on server m, and the binary decision for routing

traffic of n on path p in the state before the sclaing.

Hence, the total number of servers changed, C, and total

number of links changed, D, from the current state to the new

state, is captured by the following equations:

The optimization function of the scaling process tries to

minimize the server and link changes, in addition to the three

parameters introduced in Equation (1) for the optimization of

new policy requests provisioning. Therefore, the optimization

function of the scaling process includes the parameters C and

D. Operators can then freely tune the trade-offs between these

five optimization parameters, using the weighting factors w1;

w2; w3; w4; w5.

The scaling component of the NFCRMP, can therefore be

formalised as the following constrained optimization:

Minimize

V. NFCRMP: GP APPROACH

As shown in previous studies [24], [16] finding an optimal

solution for the VNFs placement is a NP-hard problem.

Furthermore, our results in Section VC1 show that finding the

optimal solution for the ILP Equation (1) can take hours and is

consequently not suitable to meet traffic changes in the NFV

context. Instead of finding optimal solutions (e.g., solutions

returned by an ILP solver), we, therefore, believe it to be more

realistic to look for good feasible configurations. We explore

 International Journal on Applications in Information and Communication Engineering

Volume 4: Issue 1: March 2018, pp 29 - 43. www.aetsjournal.com ISSN (Online) : 2394 - 6237

-- --

34

approximation techniques, and model the problem as finding

the best fitted solution according to a Genetic Algorithmic

(GA) model of the problem, after a fixed amount of

generations have been explored. The two main responsibilities

of the Resource Manager module new policy requests

provisioning, and scaling of existing policy requests are

implemented independently but both rely on Genetic

Programming (GP) as the mechanism to allocate resources.

GAs are part of evolutionary computing and were

introduced as a computational analogy of adaptive systems

[29]. They are modelled loosely on the principles of the

evolution via natural selection, employing a population of

individuals that undergo selection in the presence of variation,

inducing operators such as mutation and crossover. A fitness

function is used to evaluate individuals, and reproductive

success varies with fitness.

GAs can be described by the following five key steps [29]:
1. Generate an initial population F (0) with n full solutions

2. Compute the fitness value u(f) for each individual full

 solution f in the current population F (t)

3. Generate the next population F (t + 1), by selecting i best

 full solutions from F (t)

4. Produce offspring by applying the genetic operators to

 population F (t + 1)

5. Repeat from Step 2 until a satisfying solution

Following the terms used in GA, a possible configuration

state of the NFC (represented by the servers and paths

assignments for VNFs) is considered as a full solution f, if it is

an allocation of server and network resources for all the

policies in the system. We call a configuration where only one

of the policies has been allocated resources, a partial solution.

If there are m number of policies in the NFC, then a full

solution contains m number of partial solutions, each

representing the allocation of resources (i.e., servers and

paths) for each policy. The population F (t) consists of n full

solutions which represents different possible configuration

states for the NFC. We have considered two types of genetic

operators to produce offspring: (1) mutation and (2) crossover.

The crossover is a convergence operation which is intended to

pull the population towards a local min or max. On the other

hand, the mutation is a divergence operation which is intended

to occasionally break one or more members of a population

out of a local min/max space and potentially discover a better

space. Since the end goal is to bring the population to

convergence, crossovers happen more frequently (typically

every generation). The mutation, being a divergence

operation, should happen less frequently, and typically only

affects a few members of a population in any given

generation.

In our implementation, mutation is achieved via two

independent operations: replacement and rewire. In the

replacement mutation we try to change the currently allocated

server of a VNF we remove the VNF from the current server

and try to place it in a different server. In our previous work

[8], we tried to change the server of a single VNF of a selected

policy. However, in this work, we try to change the server of

all VNFs of the selected policy, and try to place all the VNFs

of that policy in a different server. Specifically, we select a

random full solution from the population and randomly pick a

partial solution from the selected full solution. We, then,

attempt to find a new server where all VNFs in that partial

solution can be placed on. If a new server is available to place

the selected VNFs, then we find the necessary paths between

selected VNFs and their successors by considering the new

placement. We have observed that trying to change the

placement of all VNFs of a policy and place them in a

different (single) server provides better solutions than trying to

change the placement of a single VNF of the policy. The next

mutation is the re-wiring, where we try to change the path

between two given VNFs and find a different path. Similar to

re-placement mutation, we first select a random full solution

from the population and randomly pick a partial solution from

the selected full solution. Then, we select a random VNF in

the partial solution and attempt to find a new path to its

successor.

As for crossovers, we first select two random full solutions

from the population and randomly pick partial solution from

each selected full solution. Then, we check whether the con-

figuration given in the first partial solution can be applied to

the second partial solution and vice versa. If both ways are

possible, then the configurations of partial solutions will be

changed accordingly.

Each generation of the GP approach goes through mutations

and crossovers. The newly generated solutions are evaluated

according to a fitness function. We use two different fitness

functions, one for the new VNFs provisioning, and another for

the scaling out/in. These fitness functions are derived

according to the optimization functions defined in the ILP

formulation, namely equations (1) and (3).

A. New policy requests provisioning: global approach

For the new policy requests, the Resource Manager uses

network’s traffic, topology data, server constraints and the

client requirements as inputs. Within the given physical

network constraints and previously allocated resources for the

existing policies, first, for each VNF in each new policy

request, the Resource Manager selects: (1) a server depending

on the server capacity requirement of the requested VNF and

(2) a path(s) depending on the expected traffic load for the

requested VNF. We have considered two types of initial

selections: (1) Depth First Search (DFS), and (2) Random. In

the DFS method, servers and paths are selected by searching

through the whole search space and selecting the first solution

we come across. The random method searches servers and

paths randomly anywhere in the network, until a feasible

configuration is found. The configuration state (the servers

and paths allocation) that the Resource Manager comes up

with for a new policy request, i.e, a partial solution.

Combination of all partial solutions (each representing a

policy) forms a full solution. Second, the Resource Manager

applies the fitness function derived from the optimization

 International Journal on Applications in Information and Communication Engineering

Volume 4: Issue 1: March 2018, pp 29 - 43. www.aetsjournal.com ISSN (Online) : 2394 - 6237

-- --

35

function in Equation (1), to each full solution. Unless

specifically mentioned, for all our experiments, we assumed

equal weights for all the parameters in the fitness function.

Third, the full solutions that return small values are preferred,

and selected as the best solutions for the next generation

population. Fourth, the Resource Manager performs ―global

approach‖ where it applies genetic operators (mutations and

crossover) on randomly selected partial solutions of randomly

selected full solutions to generate offsprings, i.e., new full

solutions. The last three steps are repeated until x number of

generations are explored and the best full solution is selected

as the configuration for the new VNFs provisioning.

B. Scaling of existing policy requests: local approach

For the scaling, the Resource Manager starts with the

current state and search for the re-assignment of resources

(servers and paths) for the set of VNFs that are scaling, using

DFS/random methods. Partial solutions relevant to the scaling

are modified according to the servers and paths found. The

fitness function, derived from the optimization function in

Equation (3), is used to measure how good each full solution

is. As in the previous new policy requests provisioning, unless

specifically mentioned, for all our experiments, we assumed

equal weights for all the parameters in the fitness function. In

contrast to the ―global approach‖, which is performed during

the initial resource allocation process, when scaling we adopt

a ―local approach‖. Because we want to minimize the changes

to current configurations, mutations and crossovers are carried

out only to the VNFs which were changed because of the

scaling (not to the all VNFs of the policies that are scaling).

As mentioned earlier, the process is continued until x number

of generations are explored and the best full solution is

selected as the configuration for re-assignment of the policy.

C. NFCRMP: GP approach vs ILP approach

We compare the GP approach with the ILP approach in the

case of new policy requests provisioning. We have imple-

mented the ILP formulation of the NFCRMP in CPLEX [11]

(version 12.5.1 with default settings) and carried out our

experiments in a machine with an Intel core i7-4500u

processor and 8GB of RAM.

1) Configuration solution timing:

We have conducted a set of experiments to compare the time

taken to find a solution for new policy requests provisioning

by ILP and GP approaches. For the GP process, the total time

includes both (1) to find an initial solution using DFS, and (2)

the GP process over 200 generations. We have considered a

small NFC with a k-fat tree architecture. We have assumed an

environment with 2 pods and 4 servers, where each pod is

connected 2 servers. For a set of policy requests with total of

10 VNFs, ILP took 0.9 seconds while GP took 0.0032 seconds

and for a set of policy requests with total of 20 VNFs, ILP

took 12.5 seconds while GP took 0.0034 seconds to find the

exact optimal solution. However, when we increase the

number of pods and servers, for an example, when we have a

topology with 4 pods and 16 servers, where each pod is

connected 4 servers, ILP implementation ran for nearly 6

hours, but crashed without finishing correctly. Therefore,

although the ILP formalisation of the problem gives the

optimal solution, the ILP computational time requirement

makes it not suitable even for a few VNFs in a large scaled

network.

2) Configuration solution quality:

In the next set of experi-ments, we compared the quality of the

solution for new policy requests provisioning of ILP and GP

approaches. In addition to the objective value, we specifically

looked at the number of servers and links have been used and

the link congestion in solutions of ILP and GP approaches. We

have assumed an environment with 2 pods and 4 servers,

where each pod is connected 2 servers. As explained in earlier

sections, the GP process can rely on either (1) DFS, or (2) a

random approach to find the initial solution. We carried out

separate GP process experiments with both types of initial

solutions. We explored different classes of problems where we

assume that the 10 VNFs are distributed over one, two or three

policies. By varying the capacity requirements of VNFs, we

observed that there are different classes of these problems,

where the differences are based on number of servers required

by these VNFs. We made sure to select 3 cases in which the

DFS would not give the optimal solution, because we wanted

to explore how the GP process improves the solution given by

DFS. Specifically: (1) 10 VNFs belong to three policies, but

all of them fit onto a single server, (2) 10 VNFs belong to two

policies, and they fit onto two servers and (3) 10 VNFs belong

to three policies, but they fit onto a single server.

In all 3 sets of experiments, DFS gave better initial solution

than random. Therefore, when the DFS solution was given as

the input to the GP process, in all 3 cases, within 200

generations, the GP algorithm was able to find solutions with

objective values that are exact to the optimal solutions given

by ILP. In addition to the objective value, the number of

servers and links have been used and the link congestion in

solutions of GP approach were similar to the solutions of ILP

approach. As described in Section V-A, the DFS method is a

good bin-packing strategy, and therefore the solutions given

by the DFS uses minimal number of servers required. Also, it

introduces less inter-rack traffic, as it tries to place VNFs of a

policy in the same server as much as possible. Since the

random method selects servers and paths randomly that can be

anywhere in the network, it uses much more servers and

introduces high inter-rack traffic, as the policy is splitted and

VNFs are placed in servers that are in different pods. Because

of these reasons, the initial solutions provided by the DFS was

better than the random approach. However, as the solution

provided by the DFS tended to use fewer links and those links

were congested, GP was able to improve the solution by using

different paths with different links to distribute the traffic and

reduce the average link utilization.

 International Journal on Applications in Information and Communication Engineering

Volume 4: Issue 1: March 2018, pp 29 - 43. www.aetsjournal.com ISSN (Online) : 2394 - 6237

-- --

36

VI. EXPERIMENTS FOR NFCRMP WITH GP

APPROACH

Experiments results, described in Section V-C, show that

the ILP approach is not suitable for large networks with

dynamic requirements, but the GP approach can find

reasonable solu-tions fast. We have therefore conducted a

more comprehensive evaluation of the performance of the

NFC Management System when using our proposed GP

approach. The rest of the paper focuses on this evaluation and

specifically on the performance of the Resource Manager

module when using the GP approach for large networks with

dynamic requirements.

We have developed a prototype of the NFC Management

System, in C++ and Python. Conceptually, the Resource

Manager, Topology Manager, Elasticity Manager and Flow

Manager can be seen as controller applications, while the Rule

Generator as an extension to the network operating system.

The network of our prototype makes use of SDN to allow

programmatic control over the traffic flow and easy

reconfiguration of the physical network. We have

implemented the physical structure in Mininet [30], used Ryu

[31] as the SDN controller, and bro firewalls and iptables as

VNFs [10]. To conduct a more realistic evaluation, we needed

data on:

(1) potential VNFs chains (policies), (2) traffic flows

passing through these VNFs chains, (3) how the traffic

changes affect the VNFs (scaling) and (4) different data center

architectures for the NFC. However, there are no publicly

available real data sets on VNF chains and traffic that pass

through VNF chains. In our previous work [8], we evaluated

the GP approach with randomly generated data (for policies

and traffic patterns), but going further, for this paper we have

used more realistic data from previous empirical analyses [32],

[12] and made some assumptions to derive the required data

[33]. We developed four programs to model the gathered data

and generated the required data. The data generating process is

described in the following sections. All gathered data and data

modelling programs are publicly available at [34].

A. Policy requests

When generating policy requests for the NFC, the main

factor to be considered is the type (e.g., small, medium, large

size network) of the enterprise/user, that is requesting the

policies. Depending on the type of the enterprise/user, the total

number of VNFs required, the number of VNFs in a policy

and types of the VNFs in the policy can vary. The policies

used in our experiments are generated based on a study about

physical middle-boxes used in enterprise networks [32], which

includes figures about types of enterprise networks, number

and types of middle-boxes used in them. For our experiments,

following statistics given in [32], we have assumed that we

are going to provide services for 4 large enterprise networks,

each enterprise network having 100 VNFs. The number of

VNFs in a policy follows a truncated power-low distribution

with exponent 2, minimum 2 and maximum 7. Therefore, for

our experiments, we derive a set of policies for each

enterprise, where each set of policies have 100 VNFs and

altogether all the policies of four enterprises have 400 VNFs.

B. Traffic flows

When simulating traffic, we need traffic data where owners

(enterprises/users) of the flows can be identified, so that we

can differentiate the traffic passing through each policy. The

traffic load that each enterprise/user is expecting can vary

according to their target applications [35]. We consider web-

based applications and for the traffic, we rely on empirical

data from previous studies [12]. The data set includes an

HTTP traffic breakdown of 30,000 users for a day which is

measured at three different vantage points of an Italian ISP

over a period of 24 hours. The traffic breakdown reports

traffic for every 2 hours. We focused on the traffic statistics of

4 enterprises: Megaupload, LeaseWeb, Level3 and Limelight.

In a data center, traffic changes happen throughout the day

and according to the amount of these changes, the VNFs

should be scaled to satisfy the current traffic demand. A

limitation of the HTTP traffic data we are using is that,

information was collected at every two hours. Therefore, the

first challenge is interpreting the pattern of traffic change over

two hours. Other studies (e.g., [36]) show that traffic changes

on usual days happen gradually over time. From times when

traffic may increase significantly, changes may still increase

gradually over 15 minutes time periods [37]. As such,

although sudden traffic changes may occur within few

minutes, we have assumed a uniform traffic increase/decrease

over the 2 hours time intervals. To reflect scaling requirements

of all situations, we spread the increase/decrease of number of

VNFs (needed for the full 2 hour traffic change) over 2 hours

and increase/decrease the capacity of one VNF at a time. The

second challenge is identifying the policies affected by each

enterprise traffic change. For each enterprise we have x

number of policies generated and each policy has a unique

traffic passing through its VNFs. When there is a change in

total traffic for that enterprise, it is very unlikely that traffic

passing through all policies of that enterprise contributed to

the change. Therefore, we randomly select a subset of policies

from that enterprise, as the policies affected by the traffic

change.

C. Scaling

After selecting the policies affected by each enterprise

traffic change, the first challenge is deciding which VNF from

each policy, needs to be scaled to satisfy the new traffic

demands. An earlier study [26] shows that in general no two

VNFs will be simultaneously and equally bottlenecked and

scaling one VNF in the policy at a time is the best strategy.

Hence, assuming the conditions in [26], we randomly select a

VNF from each policy as the bottlenecked VNF for which the

resource allocation needs to be increase/decrease. The second

challenge is, from the identified VNF instance to scale, how

many instances we should add/remove to satisfy the new

traffic demand. Here, we are making an assumption: the traffic

 International Journal on Applications in Information and Communication Engineering

Volume 4: Issue 1: March 2018, pp 29 - 43. www.aetsjournal.com ISSN (Online) : 2394 - 6237

-- --

37

flowing through the VNF instance is proportional to the

capacity of the VNF instance and it is the same for all types of

VNFs. Therefore, the initial capacity unit requirement of all

types of VNFs is assumed to be the same. Another study [38]

shows that if we add more than one instance at a time, we are

usually adding more than what is needed and wasting

resources. Therefore, we calculated a traffic change threshold

to find how many instances we should add/remove to

accommodate traffic change, and as explained in Section VI-

B, we add/remove one instance at a time. This resulted in 42

significant events over the 24 hours of traffic data. There are

two types of events: (1) when the traffic change has reached

the threshold, resources have to be reallocated to

increase/decrease at least one VNF instance or (2) when the

traffic change has not reached the threshold, modify the

bandwidth usages of the links of the paths that were effected

by the traffic change, to reflect the new traffic amount passing

by.

Figure 1: Architectures used for NFC

D. Data center architectures for NFC

We evaluated the performance of the resource allocation

algorithm assuming three different data center network archi-

tectures for NFC: (1) k fat tree, (2) VL2 and (3) BCube shown

in Figure 1. A k-ary fat-tree network [13] has three layers: a

core layer, an aggregation layer and a Top-of-Rack (ToR)

layer. It consists of (k=2)
2
 core layer switches and k pods of k

switches, half of them aggregation switches and the other half

ToR. Each switch in a pod has k ports. The ToR switches are

at the bottom of the pod, and the aggregation switches in the

middle. In one pod, each ToR switch is connected to every

aggregation switch. Each aggregation switch connects to (k=2)

switches on the core layer. We have used a 4 fat-tree

architecture, which has 20 switches: 4 pods of 4 switches and

4 switches in the core layer. For a NFC with 64 servers, 8

servers are connected to each ToR switch. The network

consists of 96 links and 13770 paths connecting all source

destination server pairs with maximum number of hops for a

path of 6. The VL2 architecture [15] shares many features

with an k-ary fat-tree architecture, but the main difference is

the core tier and aggregation tier form a Clos topology: the

aggregation switches are connected with core one’s by

forming a complete bipartite graph. We have used a VL2

architecture with 12 switches. For a NFC with 64 servers, the

network consists of 88 links and 33760 paths connecting all

source destination server pairs with maximum number of hops

for a path of 6. In the BCube architecture [14], servers are

considered part of the network infrastructure, i.e., they

forward packets on behalf of other servers. A BCube is a

recursively defined structure. At the level 0, a BCube0 consists

of n servers that connect together with a n-port switch. A

BCubek consists of n BCube(k-1) connected with n
k
 n-port

switches. We have used a BCube1 architecture where there are

8 BCube0s, each connected to 8 switches in the next level

switches and form the BCube1. Each s server of BCube0s is

connected to switch s of BCube1. For a NFC with 64 servers,

the network consists of 128 links and 7168 paths connecting

all source destination server pairs with maximum number of

hops for a path of 4.

VII. EVALUATION FOR NEW POLICY

REQUESTS PROVISIONING

In this section, we will describe the results of the experi-

ments that were carried out to evaluate the performances of

GP for one of the main functions of the Resource Manager:

new policy requests provisioning. Again, all experiments were

carried out in a machine with an Intel core i3 processor and

20GB of RAM. As described in Section VI, we assume that

we are going to provide services for policy requests of 4 large

enterprises, therefore the Resource Manager has to handle new

policy requests that consists of a total of 400 VNFs. For our

experiments, unless explicitly mentioned, we have assumed

situations where 50% of the NFC servers have to be used to

allocate resources for policy requests.

A. Comparison of GP, DFS and Random

The GP approach takes an initial solution as the input to the

GP process, and tries to improve the given initial solution

using genetic operations. As explained in Section V, we use

(1) DFS or (2) a random approach to find the initial solution.

Therefore, we can use these DFS and random solutions as the

baseline to compare the solutions given by the GP process

after 200 gener-ation. First, we carried out experiments (50

rounds) to compare the quality of the solutions provided by

DFS and random approaches for large networks. For each

round of experiment, we derived a fixed set of policies

(average of 100 policies) that include a total of 400 VNFs and

try to find solutions with DFS and random in a 128 server

environment in a 4-fat tree architecture network. We assumed

that each server has an initial capacity of 1000 units, each link

has an initial capacity of 3000 units and each VNF requires

100 server capacity units. Similar to the results observed in

smaller networks (Section V-C2) and for the same reasons, in

all the experiment rounds, the initial solutions provided by the

DFS was better than the random approach. Furthermore, we

extended our experiments to all three architectures (a 4-fat

tree, a BCube and a VL2) and explored how the GP process

improved the initial solution given by DFS over 200

generations. As the main goal of our optimization is to reduce

the average link utilization, so that the network is less

congested and future scaling requirements are minimized, the

results produced by GP reduced the average link utilization by

28.7%, 3.2% and 14.9% (compared to the DFS solution)

respectively for the three architectures.

 International Journal on Applications in Information and Communication Engineering

Volume 4: Issue 1: March 2018, pp 29 - 43. www.aetsjournal.com ISSN (Online) : 2394 - 6237

-- --

38

B. Effect of the number of generations

As explained in Section V, the GP process tries to improve

the given initial solution by applying genetic operations over

the generations. To explore how GP process improves the

initial solution, we conducted 30 round of experiments. For

each round, we derived a new set of policies (average of 100

policies) that include a total of 400 VNFs. First, we tried to

find the initial solutions with DFS, and then improve the

solution using GP process. We count the times that the fitness

value was improved during the GP process. We assumed a 128

server environment in a 4-fat tree architecture where each

server has an initial capacity of 2000 units, each link has an

initial capacity of 6000 units and each VNF requires 75 server

capacity units. The important observation was that most of the

improvements in the fitness function (52% from total number

of improvements) happens early on (during first 100

generations) and after that improvements decrease

significantly. In fact there were very few improvements after

400 generations: 6% from the total number of improvements.

C. Effect of the number of servers and nodes in the NFC

Figure 2: Factors effecting GP timing: No. of Servers

To better understand how the GP approach performs for

large networks, we carried out a set of experiments to

calculate the total time taken by the GP approach to provide a

solution for new policy requests provisioning (we used 87

fixed policy requests that consists of 400 VNFs) in large

networks. These total times include the time taken by the

Resource Manager:

(1) to perform DFS to come up with an initial solution and (2)

to run the GP process over generations to improve the initial

solution. With the current implementation of the algorithm,

most of the steps of the DFS process, such as finding a server

or a path for a VNF in the policy, are performed in logarithmic

time (the server capacities are stored in a sorted balanced tree

and operations to the tree such as searching and updating can

be done in a logarithmic time). However, in the GP process,

when we perform a genetic operation and try find an improved

solution to grow the population, we keep a copy of the original

solution. We observed that the time taken for the GP process

is dominated by this copying process. The complexity of

copying the original solution, depends on the size of data

structures that store servers and links current usage

information. In our implementation, a link is represented as a

connection between two nodes, where a node can be a server

or a switch of the NFC. Even though it is not necessarily that

there is a link between each and every node in the network, we

used an 2D array to store links usage information, with a row

and a column representing each node of the NFC. The total

number of nodes in the network depends on two factors: (1)

the number of servers in the NFC and (2) physical topology of

the NFC (Section VI-D). When we increase the number of

servers, the 2D array that stores links usage information grows

quadratic. Therefore, when we perform genetic operations,

timing for the process of copying the original solution grows

quadratic too.

The effect of total number of servers for the timing was

examined for three network architectures (4-fat tree, BCube

and VL2) separately. We conducted 50 rounds of experiments

from each type and calculated the average. We assumed that

each server has an initial capacity of 1000 units and each link

has an initial capacity of 6000 units. We defined the capacity

requirements of VNFs, in a way that 50% of the server

capacities is filled. First, in all three types of architectures, the

timings for DFS process is significantly smaller compared to

timings for GP process. For a network with 128 servers,

timings are: (1) 4-fat tree 5489 s, (2) BCube 5204 s and (3)

VL2 5236 s and growth of the graph with respect to number of

servers is linear. Second, in all three types of architectures, the

timings for the GP process is dominated by the process of

copying original solution during genetic operations. Figure 2

shows the comparison of time taken for GP process with 200

generations in different architectures when there are 16, 32,

48, 64, 80, 96, 112 and 128 servers in the NFC. We observed,

in all three architectures, the growth of the graph is quadratic

with respect to the number of servers and when they are

plotted in the same figure, three graphs fall on top of each

other. Fitting the plots into a quadratic polynomial of the form

―p1 x
2
 +p2 x+p3‖, we get within the 95% confidence bounds

the coefficient p1, for k-fat tree to be 6.107 (varying from

4.661 to 7.553), BCube to be 5.948 (varying from 5.431 to

6.465) and VL2 to be 3.972 (varying from 2.308 to 5.637).

As we mentioned earlier, the total number nodes in the

network depends on two factors: the number of servers and the

physical topology. In a situation where there are fixed number

of servers in the NFC, the total number of nodes in the NFC

will depend on the physical topology. Therefore, the timings

for the GP process with a fixed number of servers in different

network architectures will vary, depending on the total number

of nodes. We explored the time taken for GP process with 200

generations in different architectures with respect to different

number of nodes when there are 16, 32, 48, 64, 80, 96, 112

and 128 servers in the NFC. In all three architectures, the

growth of the graph is quadratic with respect to the number of

nodes in the network and when they are plotted in the same

figure, three graphs fall on top of each other.

D. Effect of the state of the NFC

To better understand the effect of the state of the NFC, to

 International Journal on Applications in Information and Communication Engineering

Volume 4: Issue 1: March 2018, pp 29 - 43. www.aetsjournal.com ISSN (Online) : 2394 - 6237

-- --

39

the improvements to the solution during the GP process, we

carried out 10 set of experiments in four types of 128 server

environments of a data center with a 4-fat tree architecture

network: (1) an environment where 80% of the server and

links capacity is full: Very tight (2) an environment where

only 70% of the server and links capacity is full: Tight, (3) an

environment where only 50% of the server and links capacity

is full: Medium and (4) an environment where only 30% of the

server and links capacity is full: Loose. We assumed that each

server has an initial capacity of 1000 units and each link has

an initial capacity of 6000 units. We used 92 fixed policy

requests that consists of 400 VNFs. We count the times that

the fitness value was improved during the GP process. The

first observation is that, in all types of environments, most of

the improvements (80% from total number of improvements)

in the fitness function happens early on (during first 100

generations), and after that improvements decrease

significantly. The second observation is that, the environments

with loosely tight resource availability get more improvements

(33% from total number of improvements) than tighter

environments (15% from total number of improvements).

E. Effect of the order of policy requests

Since we are processing policies in a new provisioning

request sequentially, we needed to check the impact of the

order policies in the results. We used fixed 83 policies that

includes 400 VNFs and processed them in 100 random orders

for an environment of 128 servers in a 4-fat tree architecture.

Our results showed that the order of the policies does not

impact the quality of the solution. Only five different fitness

function values were obtained with an average value of 1.072

and a standard deviation of 0.0058.

VIII. EVALUATION FOR SCALING OF

EXISTING POLICY REQUESTS

The second responsibility of the Resource Manager is to

find online configuration solutions to implement dynamic

scaling requirements of existing policy requests, according to

the traffic changes. The following section describes the

performance evaluation of the GP approach when handling

these dynamic re-allocation of resources in a NFC with 128

servers. As in the previous section, for our experiments, unless

explicitly mentioned, we have assumed situations where 50%

of the NFC servers have to be used.

A. Effect of the scaling approach used

Scaling of a VNF instance can be done in two ways: (1)

vertical or (2) horizontal. Vertical scaling is allocation/release

of host and bandwidth resources to/from a VNF instance,

whereas horizontal scaling is installation/removal of VNF

instances or paths. Vertical scaling is a basic feature of VMs,

which adjusts logical partitions of multiple metrics (i.e. CPU,

Memory, Bandwidth). So vertical scaling of VNFs can be

done adjusting the existing VNF instance with new metrics

of capacities for CPU, Memory and Bandwidth. However,

horizontal scaling changes the number of VM instances, which

involves running VNF instances on two or more separate VMs

hosted on the same or different servers. We assumed a

scenario where traffic flow has increased and we have to

allocate more server and bandwidth resources (extra

resources). For the vertical scaling based approach, first we

check whether the server and the path, that is currently used

by the existing VNF instance, can handle the total resource

requirement. If yes, then we do not need to change the current

network configurations (we can use the same path), and we

can perform vertical scaling for the existing VNF. If not, we

search for a new server and a path that can handle the total

resource requirement. In this case, we need to perform a live

migration of the VNF [39] and change the current network

configurations to redirect traffic to the new path, which causes

more changes than performing the vertical scaling. For the

horizontal scaling, we check for a server and a path that

supports the extra resource requirement, to add a new VNF

instance. It doesn’t matter whether we can use the original

server and path (server and the path that is currently used by

the existing VNF instance), with the horizontal scaling, we

have to add a new VNF instance and configure a new path to

the instance. Therefore, it definitely causes changes in servers

and paths.

There are two different aspects to look at when deciding

which method to use: (1) selecting a configuration solution

based on the fitness function and (2) selecting a configuration

solution considering the real implementation. When selecting

a configuration solution based on the fitness function, there

are two possible scenarios. First, we give more weight to

reduce changes to current configurations. For this, vertical

scaling is appropriate because if we can allocate/release host

resources from/to the VNF in the same server where the

existing VNF instance resided, this method does not cause

changes to the currently configured path. So the number of

links changes are zero. On the other hand, with horizontal

scaling, even though we may be able to install/remove VNFs

instances in the same server where the existing VNF instance

resided, we have to install paths to the new VNF instance or

remove paths from the additional VNF instance. Therefore, it

causes changes to the links and it is counted in the fitness

function. Second, if we give more weight to reduce links

congestion, the horizontal scaling is appropriate because,

instead of all traffic going to a single instance and links getting

congested, traffic can be distributed to both instances and

routed through more paths. With our fitness function where

we have equal weight for all parameters, we conducted 20

experiments assuming a data center with a 4-fat tree

architecture network where each server has an initial capacity

of 1000 units, each link has an initial capacity of 3000 units

and each VNF initially requires 100 server capacity units. For

each round of experiments, we have used a fixed set of policy

requests that consists of 400 VNFs as the initial policy

requests and carried out scaling out with both methods

separately. In 70% of the experiments both methods gave the

same fitness value while in 30% of the experiments, the first

 International Journal on Applications in Information and Communication Engineering

Volume 4: Issue 1: March 2018, pp 29 - 43. www.aetsjournal.com ISSN (Online) : 2394 - 6237

-- --

40

method gave better fitness values. We have observed that this

is because, when the current server and path of the existing

VNF instance can handle the total resource requirements,

vertical scaling can be performed and therefore no changes

introduced.

When selecting a configuration solution considering the real

implementation, existing work has shown that each of the

aspects has advantages as well as disadvantages [38]. Vertical

scaling is better than horizontally scaling because: (1) needs

less time for reconfiguration as it needs only metrics

adjustment, (2) does not need additional software licenses, (3)

does not affect the quantity of VNF instances and (4) does not

introduce a coordination or a traffic distribution among

multiple VNF instances. However, vertical scaling is limited

by capacity of the server or link, because it cannot increase the

resources more than the maximum capacity. Also, the con-

solidation after vertical scaling is more complicated because

the fragments caused by it are likely to be irregular. Hence, the

cost of migration caused by vertical scaling is higher than

horizontal scaling. However, as the vertical scaling based

method gave better results in terms of the fitness function, we

have used it for rest of the experiments in the paper.

B. Effect of the number of VNFs scaling

To better understand how the NFC behaves when handling

different number of VNFs scaling out simultaneously, we

carried out 4 sets of experiments (30 rounds from each):

(1) 30 VNFs were scaling out simultaneously, (2) 20 VNFs

were scaling out simultaneously, (3) 10 VNFs were scaling

out simultaneously, and (4) 2 VNFs were scaling out simulta-

neously. We have assumed a 4-fat tree architecture with 128

servers, where each server has an initial capacity of 1000

units, each link has an initial capacity of 3000 units and each

VNF initially requires 100 server capacity units. For each

round of experiments, we have used a fixed set of policy

requests that consists of 400 VNFs as the initial policy

requests. We count the times that the fitness value was

improved during the GP process. The observation is that there

is little benefit in running the GP process when the number of

VNFs scaling simultaneously is small. The number of

improvements when 2 VNFs were scaling was 6% from total

number of improvements. One can avoid running the GP

process and use directly the DFS solution. As the number of

VNFs scaling simultaneously increases, the potential gains

provided by the GP optimization also increases. The number

of improvements when 30 VNFs were scaling was 41% from

total number of improvements. In all cases, most of the

improvement in the fitness function (66% from total number

of improvements) happens early on (during first 100

generations), and after that the improvements decrease

significantly.

C. Effect of the local approach

Although the ―global approach‖ where we are allowed to

change configurations of any policy of NFC during the genetic

operations, may provide better resource allocations, the

solutions may require drastic re-arrangements of the current

configurations, hence making them impractical in real

scenarios. However, we can use this method to provide us

with a baseline to compare against a ―local approach‖ where

we limit changes to configurations of policies that are scaling.

We conducted experiments for both GP based global and local

approaches to compare performances with respect to the

resource allocation efficiency over several days. We repeated

the data for single day (we derived 42 significant events over

the 24 hours of traffic data [see Section VI-C]) for two times

to get the data to emulate 2 consecutive days, and therefore we

had total of 84 events for 2 days. The global approach is

considered as the baseline i.e., the minimization of the

parameters relevant to server and links usage. For the local

approach, we explored 2 cases. First, we considered a situation

where all parameters of the objective function are considered:

minimizing resources and changes (all the weights in the

Equation 3 are 1) and we call it ―local 1‖. Second, we

considered a situation where only the parameters relevant to

changes are considered: ―local 2‖ (w1 = w2 = w3 = 0 and w4

= w5 = 1). The local 2 strategy represented the scaling

solutions that in theory minimally disturb the traffic (e.g.,

packet drops, latency), because it tried to minimize the

changes to the servers and links.

Figure 3: Fitness value comparison: KFat tree architecture

Figure 4: Server changes comparison: KFat tree architecture

Once the solutions have been provided for the 84 events by

 International Journal on Applications in Information and Communication Engineering

Volume 4: Issue 1: March 2018, pp 29 - 43. www.aetsjournal.com ISSN (Online) : 2394 - 6237

-- --

41

the global and two local approaches, we manually calculated

the value of the each fitness function of the provided solutions,

assuming that changes do not count (i.e., w4 = w5 = 0) and

compared the global and local approaches. For each set of

experiments, we have used a fixed set of policy requests that

consists of 400 VNFs. We have assumed a 128 server

network, where each server has an initial capacity of 1000

units, each link has an initial capacity of 3000 units and each

VNF requires 100 server capacity units. The fitness value

comparison (an average from 5 sets of experiments) for 2

consecutive days for a 4-fat tree architecture network is shown

in figure 3. The global approach produced solutions with

better resource allocations than the other two. Furthermore,

the figure clearly shows that approaches (2) and (3), followed

essentially the same behavior (modulo a translation in the y

axis) that the behavior of the baseline (1), if we smooth the

curves.

A comparison of server changes needed in the configuration

solutions (an average from 5 sets of experiments) given by (1)

global approach, (2) local approach 1 and (3) local approach

2, after processing each event is shown in the Figure 4. As

expected, the global approach caused the largest number of

changes. The solutions given by the local approaches had

fewer server changes from their previous configuration

because the local approaches performed genetic operations

only on the partial solutions that are scaling. The interesting

observation was that, most of the time both local approaches

had the same number of server changes, making the two

methods essentially the same. We have noted that these server

changes are the unavoidable changes due to the scaling

requirements, and not necessarily caused by the genetic

operations. In addition, similar to the server changes, we have

observed that the solutions given by the global approach has

most links changes from their previous configuration. Most of

the time both local approaches have the same number of links

changes. As shown earlier, local approach 1 (which

additionally minimizes usage of servers and links congestion)

gave better fitness values than local approach 2. Therefore,

local approach 1 provided solutions with better server and

network resources utilization without making many changes.

Although we have included the local approaches comparison

results only for a 4-fat tree architecture network because of the

limited pages, we have observed that this behaviour is the

same for the other two architectures: BCube and VL2.

Therefore, in the rest of the experiments, we have used only

local approach 1.

D. Effect of the NFC architecture

Going further, we have compared the behaviour of local ap-

proach 1 with global approach for other architectures: BCube

and VL2 architectures for 2 consecutive days. The fitness

values (an average from 5 sets of experiments) for BCube and

VL2 architectures for 2 consecutive days are shown in Figure

5 and 6 respectively. As mentioned earlier, for each set of

experiments, we have used a fixed set of policy requests that

consists of 400 VNFs. We have assumed a 128 server

network, where each server has an initial capacity of 1000

units, each link has an initial capacity of 3000 units and each

VNF requires 100 server capacity units. Similar to the 4-fat

tree architecture, the global approach produced solutions with

better resource allocations than the local approach for BCube

and VL2 architectures. Also, they followed essentially the

same behaviour (module a translation in space) of the global

approach: the baseline. In the results of all three architectures,

during most of the scaling events of each day, the fitness

values grew. The reason is, in the traffic model we are using,

the traffic is increasing until late night of each day.

We have observed that each architecture’s fitness values are

effected by different parameters of the fitness function. For all

three architectures, number of links used and links utilization

made the difference in the fitness values and the number of

servers used were very similar. In the BCube architecture, the

difference between local and global approaches was due to the

fact the local approach always used fewer links than the global

approach. While the global approach freely used more links

over time, the local approach hesitated to use more links

because we were trying to minimize number of server and

links changes in the local approach. Therefore, the solutions

given by the local approach were more congested than the

solutions given by the global approach. In the VL2 and 4-fat

tree architectures, the number of links used was similar for

both the local approach and the global approach, while the

difference was on link utilization. When considering the

fitness values increase for each day, the VL2 architecture’s

fitness values for the local approach increased fast with

respect to the 4-fat tree and BCube. In the VL2 architecture,

servers are located in a more compact manner and it has fewer

paths between servers inside the same pod. Therefore, the

links got more congested, and when traffic was increasing the

link utilization also increased fast. The 4-fat tree architecture

has more paths and therefore the servers were not compact. It

tried to use more links and made the links less congested.

Hence, the 4-fat tree architecture had more smooth effect on

the parameters of the fitness function.

IX. FINAL REMARKS

In this paper we present a comprehensive analysis on the

proposed GP based resource allocation algorithms for: (1) new

VNFs provisioning and (2) scaling of existing VNFs with the

traffic changes. We compared the GP approach with

traditional resource optimization technique: ILP for a small

network and explored the evolution of the GP based algorithm

for large networks, over a full day traffic patterns based on

more realistic data. The results showed that generating

solutions even for 10 VNFs in a relatively small network (16

servers), ILP can take hours while GP takes only few

milliseconds. Furthermore, although GP may not provide the

optimal solution, GP can decide the computing and network

allocations for hundreds of policies (around 400 VNFs) in a

128 server environment and find reasonable solutions on the

order of milliseconds. Moreover, our results showed that the

GP process provided an average objective value improvement

 International Journal on Applications in Information and Communication Engineering

Volume 4: Issue 1: March 2018, pp 29 - 43. www.aetsjournal.com ISSN (Online) : 2394 - 6237

-- --

42

percentage up to 7.87% over the initial solution (the baseline)

with a reduction of average link utilization up to 28.7% for the

three architectures (a 4-fat tree, a BCube and a VL2). In the

evaluation of the algorithms over the time, our results showed

that, a ―local approach‖ provides reasonable solutions with

lesser changes to the current configurations, and moreover, it

does not diverge from the ―global approach‖ solutions over

time.

Figure 5: Fitness value comparison: BCube architecture

Figure 6: Fitness value comparison: VL2 architecture

In this paper, for both initial policy requests provisioning

and scaling, we have considered policies with chains of VNFs,

and assumed that one VNF can have only one successor VNF.

However, we can easily extend our ILP model to facilitate

general policies that can be represented with Directed Acyclic

Graphs (DAG), where one VNF can have more than one

successor VNF, and the VNF might need more than one path

assigned to it so that its traffic can be directed to the

successors. We can use a constant to define the required

number of paths to route traffic to its successor(s) and modify

the constraint 2c in the Section IV to reflect the required

number of paths. Furthermore, we have evaluated the

behaviour of the scaling out/in resource allocation algorithm,

with fitness functions that considered the number of servers

used, links used, links congestion, number of server changes

and links changes. There are many other linear and non-linear

factors that might affect the NFC: traffic lost, delay, cost of

VNFs software license [22] and power consumption.

Therefore, we need to look for more approximation algorithms

that can cope with linear and non linear objective functions.

As the future work, we are planning to explore the feasibility

of using the concept of meta heuristics in operation research,

namely the Iterative Local Search (ILS) approach which is one

of the most popular single solution based meta-heuristics. We

are planing to compare the performances of the ILS approach

with GP and ILP approaches. Also, for a fairer comparison

with ILP, we are thinking of an approach to include a warm

start for the ILP.

X. ACKNOWLEDGMENT

We would like to thank the reviewers for their

comments and suggestions that helped us to improve the

paper significantly.

This research was sponsored by U.S. Army Research

Laboratory and U.K. Ministry of Defence and was

accomplished under Agreement Number W911NF-06-3-

0001. The views and conclusions contained in this

document are those of the authors and should not be

interpreted as representing official policies, either

expressed or implied, of U.S. Army Research Laboratory,

U.S. Government, U.K. Ministry of Defence or U.K.

Government. The U.S. and U.K. Governments are

authorized to reproduce and distribute reprints for

Government purposes notwithstanding any copyright

notation here on. Jorge Lobo was partially supported by

the Secretaria dUniversitats i Recerca de la Generalitat de

Catalunya. Also this work was supported by the Maria de

Maeztu Units of Excellence Programme.

References

[1] ETSI, ―Network functions virtualisation white paper,‖ SDN and Open-

Flow World Congress, 2013.

[2] T. C. V. C. Mathieu Bouet, Jrmie Leguay, ―Cost-based placement of vdpi
functions in nfv infrastructures,‖ in International Journal of Network

Management, 2015.

[3] W. Rankothge, F. Le, A. Russo, and J. Lobo, ―Experimental results on
the use of genetic algorithms for scaling virtualized network functions,‖

in IEEE SDN/NFV 2015.

[4] Y. Li, L. Phan, and B. T. Loo, ―Network functions virtualization with
soft real-time guarantees,‖ in IEEE International Conference on

Computer Communications (INFOCOM), 2016.

[5] G. Milad, K. Aimal, S. Nashid, A. Khalid, A. Reaz, and B. Raouf,
―Elastic virtual network function placement,‖ in Cloud Networking

(CloudNet), 2015 IEEE 4th International Conference on, 2015.

[6] N. S. Milad Ghaznavi, Aimal Khan and at el., ―Elastic virtual network
function placement,‖ in IEEE CloudNet, 2015.

[7] X. Meng, V. Pappas, and at el, ―Improving the scalability of data center
networks with traffic-aware virtual machine placement,‖ in GIIS ’12.

[8] W. Rankothge, J. Ma, F. Le, A. Russo, and J. Lobo, ―Towards making

network function virtualization a cloud computing service,‖ in IEEE IM
2015.

[9] S. Jain, A. Kumar, and et al, ―B4: Experience with a globally-deployed

software defined wan,‖ in ACM SIGCOMM ’13, 2013.
[10] ―Openflow 1.4 specifications,‖ https://www.opennetworking.org/sdn-

resources/onf-specifications/openflow.

[11] ―Cplex,‖ http://www-01.ibm.com/software/ commerce/ optimization/
cplex-optimizer/.

[12] G. Vinicius, F. Alessandro, M. Marco, and at el., ―Uncovering the big

players of the web,‖ in ICTMA ’12.
[13] C. Leiserson, ―Fat-trees: universal networks for hardware-efficient su-

percomputing,‖ in IEEE Transactions on Computers, 1999.

[14] C. Guo, G. Lu, D. Li, and at el, ―Bcube: a high performance, server-
centric network architecture for modular data centers,‖ in ACM

 International Journal on Applications in Information and Communication Engineering

Volume 4: Issue 1: March 2018, pp 29 - 43. www.aetsjournal.com ISSN (Online) : 2394 - 6237

-- --

43

SIGCOMM 2009.

[15] A. Greenberg, J. R. Hamilton, N. Jain, and at el, ―Vl2: a scalable and

flexible data center network,‖ in ACM SIGCOMM 2009.
[16] R. Cohen, L. Lewin-Eytan, and at el, ―Near optimal placement of virtual

network functions,‖ in INFOCOMM 2015.

[17] Z. Qazi, C. Tu, L. Chiang, and at el, ―Simple-fying middlebox policy
enforcement using sdn,‖ in ACM SIGCOMM ’13, 2013.

[18] L. Shi, B. Butler, and at el, ―Provisioning of requests for virtual machine

sets with placement constraints in iaas clouds.‖ in IEEE IM ’13, 2013.
[19] D. Jayasinghe, C. Pu, and at el, ―Improving performance and availability

of services hosted on iaas clouds with structural constraint-aware virtual

machine placement.‖ in IEEE SCC ’11.
[20] K. Konstanteli, T. Cucinotta, K. Psychas, and T. Varvarigou,

―Admission control for elastic cloud services,‖ in IEEE Cloud ’12, 2012.

[21] B. Jennings and R. Stadler, ―Resource management in clouds: Survey
and research challenges,‖ in JNSM ’14, 2014.

[22] M. Luizelli, L. Bays, L. Buriol, M. Barcellos, and L. Gaspary, ―Piecing

together the nfv provisioning puzzle: Efficient placement and chaining

of virtual network functions,‖ in IEEE IM ’15.

[23] M. Bari, S. Chowdhury, and at el, ―On orchestrating virtual network

functions,‖ in IEEE/ACM/IFIP CNSM 2015.
[24] T. Lukovszki, M. Rost, and S. Schmid, ―Its a match! near-optimal and

incremental middlebox deployment,‖ in ACM SIGCOMM Computer

Communication Review: Jan 2016.
[25] M. Ghaznavi, N. Shahriar, and at el, ―Service function chaining sim-

plified,‖ in eprint arXiv:1601.0075.

[26] A. Gember, R. Grandl, A. Anand, and at el, ―Stratos: Virtual middle-
boxes as first-class entities,‖ Technical Report TR1771, 2013.

[27] S. Clayman, E. Maini, and at el, ―The dynamic placement of virtual

network functions,‖ in NOMS 2014.
[28] R. Mijumbi and at el, ―Design and evaluation of algorithms for mapping

and scheduling of virtual network functions,‖ in NetSoft 2015.

[29] M. Melanie, An Introduction to Genetic Algorithms, 1999.
[30] B. Lantz, B. Heller, and N. McKeown, ―A network in a laptop: Rapid

prototyping for software-defined networks,‖ in ACM HotNets’10, 2010.

[31] ―Ryu sdn controller,‖ http://osrg.github.io/ryu/.
[32] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, and at el., ―Making

middleboxes someone elses problem: network processing as a cloud

service,‖ in ACM SIGCOMM ’12, 2012.
[33] ―Data modelling process,‖ http://arxiv.org/abs/1702.00369v3.

[34] ―Test data,‖ https://github.com/windyswsw/ DataForNFVSDN

Experiments.
[35] S. Gebert, R. Pries, D. Schlosser, and K. Heck, ―Internet access traffic

measurement and analysis,‖ in ICTMA ’12.

[36] K. Srikanth, S. Sudipta, and at el., ―The nature of data center traffic:
Measurement and analysis,‖ in ACM SIGCOMM IM 2009, 2009.

[37] Y. Tarui, ―Analyzing the impact of major social events on internet

exchange traffic,‖ in NANOG38, 2009.
[38] X. C. Wenting Wang, Haopeng Chen, ―An availability-aware virtual

machine placement approach for dynamic scaling of cloud applications,‖

in Conference on Autonomic and Trusted Computing, 2012.

[39] S. H. J. G. H. C. Clark, K. Fraser and at el., ―Live migration of virtual

machines,‖ in NSDI, 2005.

