
 International Journal on Applications in Information and Communication Engineering

Volume 4: Issue 2: April 2018, pp 1 - 11. www.aetsjournal.com ISSN (Online) : 2394 - 6237

--

1

−

Abstract— Cloud computing is growing exponentially, whereby

there are now hundreds of cloud service providers (CSPs) of various

sizes. While the cloud consumers may enjoy cheaper data storage and

computation offered in this multi-cloud environment, they are also in

face of more complicated reliability issues and privacy preservation

problems of their outsourced data. Though searchable encryption

allows users to encrypt their stored data while preserving some search

capabilities, few efforts have sought to consider the reliability of the

searchable encrypted data outsourced to the clouds.

In this paper, we propose a privacy-preserving STorage and

REtrieval (STRE) mechanism that not only ensures security and

privacy but also provides reliability guarantees for the outsourced

searchable encrypted data. The STRE mechanism enables the cloud

users to distribute and search their encrypted data across multiple

independent clouds managed by different CSPs, and is robust even

when a certain number of CSPs crash. Besides the reliability, STRE

also offers the benefit of partially hidden search pattern. We evaluate

the STRE mechanism on Amazon EC2 using a real world dataset and

the results demonstrate both effectiveness and efficiency of our

approach.

Keywords— searchability, privacy, and reliability

I. INTRODUCTION

loud computing is growing exponentially, whereby there

are now hundreds of cloud service providers (CSPs) of

various sizes [1]. A concept of a cloud-of-clouds (also called

an intercloud) is proposed and studied in recent years [1], [2].

In a cloud-of-clouds, we disperse data, with a certain degree

of redundancy, across multiple independent clouds managed

by different vendors, such that the stored data can always be

available even if a subset of clouds becomes inaccessible.

 C. Jayasri , Final Year Cse, Meenakshi Ramaswamy Engineering

College, Thathanur, Tamilnadu, India.

 S.Jayasuriya , Final Year Cse, Meenakshi Ramaswamy

Engineering College, Thathanur, Tamilnadu, India.

P.Ramya , Final Year Cse, Meenakshi Ramaswamy Engineering

College, Thathanur, Tamilnadu, India.

R.Santhini , Final Year Cse, Meenakshi Ramaswamy Engineering

College, Thathanur, Tamilnadu, India.

 Savithri.R , Final Year Cse, Meenakshi Ramaswamy Engineering

College, Thathanur, Tamilnadu, India.

C.Arunkumar , Assistant Professor, Meenakshi Ramaswamy

Engineering College, Thathanur, Tamilnadu, India.

The multi-cloud environment [2] offers plenty of new op-

portunities and avenues to cloud consumers. Cloud consumers

will be able to leverage not just one cloud provider, but many,

to solve their diverse needs and switch providers if one ceases

service. To promote the multiple clouds, IEEE has initiated

Intercloud Testbed [1] that helps make interactions among

multiple clouds a reality.

However, while cloud consumers may enjoy cheaper data

storage and powerful computation capabilities offered by

multiple clouds, consumers also face more complicated

reliability issues and privacy preservation problems of their

outsourced data. More specifically, as it is difficult to obtain

clear guar- antees on the trustworthiness of each CSP [3],

cloud con- sumers are typically suggested to adopt searchable

encryption techniques [4] [5] to encrypt their outsourced data

in a way that the encrypted data can be directly searched by

the CSPs without decryption. Despite many efforts devoted to

improving efficiency and security of the searchable

encryption, there is little consideration on ensuring the

reliability of the searchable encrypted data. Though cloud

storage provides an on-demand remote backup solution, it

inevitably raises dependability con- cerns related to having a

single point of failure and to possible storage crash.

Existing reliability guarantees solely rely on each CSP’s

own backup solution, which however could be a single-point

of failure. For instance, the crash of Amazon’s elastic

computing service in 2011 took some popular social media

sites off- line for a day and one energy department

collaboration site unavailable for nearly two days. More

seriously, this crash has permanently destroyed many

customers’ data with serious consequences for some users [6].

It is worth noting that a com- prehensive solution to

simultaneously ensuring searchability, privacy, and reliability

on data outsourced to multiple clouds is not trivial to define.

Simply replicating data at multiple CSPs is the most

straightforward method, which however is the least cost-

efficient approach. To the best of our knowledge, we are not

aware of any existing work that addresses the three

requirements in a comprehensive manner.

To address the aforementioned challenges, we propose a

privacy-preserving STorage and REtrieval (STRE) mechanism

that enables cloud users to distribute and search their

encrypted data in CSPs residing in multiple clouds while

obtaining reliability guarantees. We have designed efficient

and secure multi-party protocols based on the secret sharing

mechanism, to ensure that a user will be able to reconstruct the

query results even if (n t) CSPs have been compromised,

 C. JAYASRI , S.JAYASURIYA

, P.RAMYA

, R.SANTHINI , SAVITHRI.R ,

C.ARUNKUMAR

 ,

 PRIVACY-PRESERVING STORAGE AND

RETRIEVAL IN MULTIPLE CLOUDS

C

 International Journal on Applications in Information and Communication Engineering

Volume 4: Issue 2: April 2018, pp 1 - 11. www.aetsjournal.com ISSN (Online) : 2394 - 6237

--

2

−

∑

j=
1

where n is the total number of CSPs storing the user’s files

and t is a threshold value predefined. Moreover, the STRE

mechanism also offers better protection on the use’s search

pattern compared to existing works. Specifically, many

existing works on searchable encryption would completely

disclose the user’s search pattern that indicates whether two

searches are for the same query keyword or not [7][8]. In our

STRE mechanism, this pattern leak risk is lowered because the

search is conducted distributed and the search pattern will be

revealed only if there are more than t CSPs collude.

In this paper, we provide an in-depth security analysis,

and present the results of our experimental study. We build

a testbed in Amazon EC2 to simulate the multi-cloud en-

vironment and evaluate our mechanism using a real world

dataset (i.e., the Enron dataset [9]). Our experimental results

demonstrate the efficiency of our proposed approach. The rest

of the paper is organized as follows. In Section II, we discuss

some preliminary notions. In Section III, we present the

system model and design goals. The proposed STRE

mechanism is provided in Section IV. Security analysis and

experimental results are respectively shown in Section V and

Section VI. Section VII reviews the related works. Finally,

Section VIII draws the conclusion of this paper.

II. PRELIMINARIES

For better understanding, we first give a brief review of the

idea of searchable encryption, and then introduce the concept

of secret sharing that forms our approach.

A. Searchable Encryption

Searchable encryption is a cryptographic primitive, which

allows users to execute keyword-based search directly on en-

crypted data without decryption. Some scheme [4] implements

the searchability via a special ciphertext that allows searching,

while most other schemes [10], [8], [7], [11], [12] make the

client generate a searchable encrypted index. Here, we briefly

introduce the generic framework of searchable encryption,

which will be followed by our mechanism.

Basically, a searchable encryption scheme includes four

stages. Initially, a user encrypts a set of files into ciphertexts

and a sophisticated index. Both file ciphertexts and index

are uploaded to a remote server for storage. Later, when

the user wants to retrieve the files containing some keyword,

he/she generates a trapdoor from the keyword and sends

the trapdoor (instead of the keyword itself) to the server for

search. The server searches with the trapdoor and returns a

set of ciphertexts, of which the underlying files contain the

query keyword. Finally, the user decrypts these ciphertexts

and obtains the plain files.

This work does not focus on optimizing the searchable

encryption design; instead, we focus on how to introduce

reliability into existing searchable encryption schemes [7].

B. Secret Sharing

A (n, t)-single secret sharing scheme [13] is a randomized

protocol for the distribution of secret s among a set of n parties

such that the recovery of secret is possible with at least t

shares.

In this paper, we utilize single secret sharing in a spe-

cial case, namely (n, n)-single secret sharing, which can be

achieved in linear time complexity. Suppose a secret s is to be

v1, . . . , vn 1 are randomly chosen. We assign the share vi

to

ith party for i = 1, . . . , n. In order to reconstruct the

secret

s, n parties expose their shares and compute

Note that the simplified (n, n)-single secret sharing scheme

is additive homomorphic. Specifically, suppose s and s
′
 are

two secrets, and vi and vi
′ are respectively the ith (n, n)-

single secret share of s and s
′
. Then vi + vi

′ is the ith (n,

n)-single secret share of s + s
′
.

Similar to the (n, n)-single secret sharing, a (n, t)-multiple

secret sharing scheme requires that at least t or more parties

can pool their secret shadows and reconstruct multiple secrets.

In the paper, we use a generic multiple secret sharing scheme

for sharing trapdoor, which can be instantiated with Bai’s

construction [14].

Figure 1. Multi-Cloud Architecture

III. PROBLEM FORMULATION

In this section, we introduce the system architecture, fol-

lowed by defining the problem and presenting our security

goals.

A. System Model and Problem Statement

In this work, we consider the cloud storage services offered

in a multi-cloud environment, which involves two types of

entities: i) Users, who store a large number of encrypted files in

multiple clouds and execute keyword-based queries to access

and manipulate their stored files; ii) Cloud Service Providers

(CSPs), who possess storage and computation resources, are

willing to cooperatively store and manage the users’ files.

We focus on searchability of encrypted data, stored by

users in one or many multi-cloud service providers.

Informally, searchability (of encrypted data) refers to the

 International Journal on Applications in Information and Communication Engineering

Volume 4: Issue 2: April 2018, pp 1 - 11. www.aetsjournal.com ISSN (Online) : 2394 - 6237

--

3

Q

−

−

−

C − C

−

ability of end users to retrieve encrypted files without having

the CSP to decrypt it. These searches are typically carried out

using keywords, which the client uses to locate the desired

files.

We formalize this notion of general keyword search problem

on plain files in multi-cloud environment.

Definition 1 (General keyword search): Given a user, let f

be a collection of user files stored in a number of CSPs located

in multiple clouds. A keyword search query (wq) issued by

the user retrieves these files (from the CSPs), that contain the

query keyword wq.

In the next subsection, we extend this general keyword

search definition to the reliable and private keyword search

after the introduction of our security goals.

B. Adversary Model and Design Goals

We consider a ―honest-but-curious‖ adversary, which can

compromise a tolerable number (t 1) of CSPs and attempt to

learn from the information stored in the sites of the

compromised CSPs.

Our design goals include the following objectives:

Reliability. Given n CSPs, the system should still function

if at least t (t < n) CSPs are available, where t is a

predefined threshold value for the system.

Semantic Security. The system should be semantically

secure [7] by satisfying the following two requirements. First,

given the file index and the collection of encrypted files, no

adversary can learn any information about the original files

except the file lengths. Second, given a set of trapdoors for a

sequence of keyword queries, no adversary can learn any

information about the original files except the access pattern

(i.e., the identifiers of the files that contain the query keyword)

and the search pattern (i.e., whether two searches are looking

for the same keyword or not).

Trapdoor Security. We aim to achieve the conditional

trapdoor security. Specifically, we require that any infor-

mation about the query keyword -including the search

pattern- should not be leaked before the multiple CSPs’

collaborative search. The requirement holds even if at most (t

1) CSPs are compromised by adversary.

Robustness. We require that: i) when the protocol suc-

cessfully completes, the correct files are returned and

reconstructed by the users; ii) when the protocol aborts, even

in the collaborative search stage, nothing is returned and CSPs

learn nothing about the file collection or the underlying

searched keyword.

Among the design goals above, reliability and trapdoor

security are new features which have not been considered yet

in existing works of symmetric searchable encryption [4],

[12], [11], [7], [15], [8]. Therefore, in what follows, we give

more details about the trapdoor security. We will elaborate on

the reliability property in the next section when the protocols

are introduced.

Trapdoor security is defined for protecting search pattern.

Informally, search pattern is the information about whether

any two queries are generated from the same keyword or not.

Most known searchable encryption schemes [4], [12], [11],

[7], [15], [8] allow to leak searchable pattern, and the

limitation has recently been exploited for extracting file

contents [16].

We observe that the search pattern may be leaked in two

ways. First, if a CSP knows the access pattern, the information

about the identifiers of the files that contain the query

keyword, it will have a higher success rate in guessing

whether two queries are looking for the same keyword by

comparing the query results. In particular, after search, the

CSP will know the identifiers of files that contain the query

keywords if there is no extra prevention in place. If two

queries return the same set of files, the CSP are likely to infer

that these two queries contain the same keyword and reveal

the user’s search pattern. Second, the search pattern may also

be leaked in that the searchable encryption schemes [4],

[12], [11], [7], [15], [8] exploit deterministic trapdoor

techniques and hence CSPs can learn whether two queries are

for the same keyword or not. The CSPs can then store the

deterministic trapdoors and the corresponding file identifiers

to infer the content of the encrypted query keywords

contained in incoming queries.

To address the issue of the deterministic trapdoor, trapdoor

security aims at guaranteeing that the only way for leaking

search pattern will be restricted to the leakage of access

pattern. In this way, we can hide the search pattern before

any collaborative search is carried out.

The formalization is based on a game virtually played

between an adversary and a challenger with a security pa-

rameter. The adversary has the capability of compromising

at most (t 1) CSPs and learning the information (e.g.,

ciphertexts, trapdoor shares) intended to these compromised

CSPs. Whereas, the challenger plays the role of a legitimate

user. Note that this game is an abstract formalization of a toy

case or files storage and retrieval in case of two keywords, and

it is useful to provide our security analysis later. Formally, the

game is defined as follows.

Challenge. The adversary claims a collection of files for

challenge. The challenger encrypts these files into a set of

ciphertexts and an index. The challenger outputs the index.

Note that since the relation between files and key- words is

just embedded in the index and the encrypted file chunks are

useless for adversary’s keyword guess, we only provide

adversary with the index for simplicity.

Query. The adversary generates two keywords w0 and w1,

and submits a trapdoor query (, w0, w1) to the challenger.

Notice that is a (t 1)-element set for simulating the CSPs being

compromised. The challenger picks a random bit b, generates

a set of trapdoor shares on wb and just outputs the shares

intended for the CSPs in C.

 Guess. The adversary outputs b
′
as the guess of b.

We define the advantage of an adversary in this game as

Pr[b
′
 = b] 1/2. Then, trapdoor security is defined

below.

Definition 2 (Trapdoor security): A keyword search mech-

anism, specified according to Definition 1, satisfies trapdoor

 International Journal on Applications in Information and Communication Engineering

Volume 4: Issue 2: April 2018, pp 1 - 11. www.aetsjournal.com ISSN (Online) : 2394 - 6237

--

4

−

−
−

security if all probabilistic polynomial time adversaries have

at most a negligible advantage in the above game.

Having defined the main security goals for our scheme, we

revisit our Definition 1 as follows.

Definition 3 (Reliable and private keyword search): A reli-

able and private keyword search scheme in a multi-cloud

environment is a keyword search (as specified in Definition

1), which satisfies reliability, semantic security, trapdoor

security and robustness.

IV. STRE MECHANISM

In this section, we first provide an overview of our proposed

STRE mechanism followed by two naive approaches. The

naive approach is introduced to clarify the challenges in

design- ing scheme for the aim of searchability and reliability.

Then, we present the detailed protocols in the STRE

mechanism.

A. Overview

The STRE mechanism consists of three major phases: the

Setup Phase, Storage Phase and Retrieval Phase.

Setup Phase. The phase generates a master secret key from

a security parameter and assigns the key to a user. Notice that

the security parameter which is assumed to be known to all the

adversaries, specifies the input size of the problem. Both the

resource requirements of the cryptographic algorithm or

protocol and the adversary’s probability of breaking security

are also expressed in terms of the security parameter.

Storage Phase. In the phase, a user takes input a col-

lection of files and the master secret key, and generates a set

of file shares and a file index. The file shares and index are

uploaded to the corresponding CSP.

Retrieval Phase. This phase includes three steps: First, to

search the files containing a certain keyword, the user

generates a set of trapdoor shares based on the query keyword

and his/her master secret key. The trapdoor share is sent to the

respective CSP. Second, the CSPs col- laborate together to

search with their individual trapdoor share, and response the

search results back to the user.

Third, the user reconstructs and decrypts the results and

obtains the clear files, each of which contains the query

keyword.

B. Naive Approaches

We first describe two naive approaches and then specify

their drawbacks. The first approach is trivial replication. In

particular, we can replicate the single-user searchable en-

cryption scheme to n CSPs, and each CSP stores the same

searchable ciphertexts. Hence, even at most n 1 CSPs are

unavailable, the remote files are still accessible with keyword

search. However, the approach is undesirable, as it costs too

much space for saving the redundant data.

For reducing redundancies, while tolerating CSP failures,

a traditional solution is erasure coding. Specifically, we can

encode the files into a set of shares and distribute the shares

to n CSPs, so that even a tolerable number of CSPs are

unavailable, the shares from the rest CSPs can be used for

reconstructing the plain files. Based on the intuition, the

second, share-based, approach is described as follows.

For each file, the user encrypts it and further encodes the

ciphertext into a set of file shares. In addition, for the keyword

related to the file (for simplicity we just assume a single

keyword is related to the file), the user applies a one-way

function on it. Recall that a one-way function is such that

it is easy to compute it on every input but hard to invert given

the image. This enables keyword privacy: an adversary cannot

know the keyword even if it has recovered the corresponding

trapdoor. The user then performs (n, t)-secret sharing on the

trapdoor and obtains a set of trapdoor shares. Finally, both file

and trapdoor shares are uploaded to respective CSP for

storage. To retrieve the files containing a certain keyword,

the user generates the trapdoor of the keyword, employs

another (n, t)- secret sharing on the trapdoor and sends the new

set of trapdoor shares to CSPs. Note that for an identical

keyword, its trapdoor

shared in the storage and retrieval phases should be the

same. This ensures that the CSPs are able to run multi-party

protocols to perform ―decision search‖ file by file through

checking whether the shares received in the retrieval phase

and those received in the storage phase are from the same

secret. If so, they send the corresponding file shares back to

the user, and the user is able to reconstruct and decrypt the

results.

We note that the second approach relaxes the reliability

guarantee of the first approach (from tolerating (n 1) failures

of CSPs to (n t)), and hence enjoys the space bonus: it only

needs one tth of the storage cost in the first approach.

However, the second approach also has its own drawback as it

is very time consuming. In particular, since each CSP does not

have enough information on its own to decide whether the

trapdoor shares computed and uploaded in storage phase and

the fresh shares sent in user’s query are from an identical

secret, at least one interaction is needed among all the other

CSPs to recover and compare secret. In addition, since the

search works in the way of per-file decision, the total number

of interactions taken for a single keyword query is linear to

the number of files stored at all the CSPs.

To address the efficiency bottleneck in the second approach,

we propose the STRE mechanism. STRE works in a similar

way of the (second) straightforward approach, but builds index

and shares the ―entrance‖ of inverted file list for accelerating

search. STRE achieves constant time of interactions for a

single keyword search. We will describe STRE in the next

subsection.

C. STRE Protocols

We first present an overview of our proposed STRE, and

then elaborate its detailed construction including security tech-

niques for achieving our goals.

STRE builds with inverted index. In particular, to enable

efficient keyword search, we initially scan the file collection

and map each possible keyword to a (linked) list of files,

ensuring that any file in the list contains the corresponding

 International Journal on Applications in Information and Communication Engineering

Volume 4: Issue 2: April 2018, pp 1 - 11. www.aetsjournal.com ISSN (Online) : 2394 - 6237

--

5

−
−

− −

keyword. Given a keyword, it is efficient to search the related

files by mapping the keyword and traversing the

corresponding inverted file list. Moreover, since the inverted

list is linked, we can consider the first node as the entrance of

the list and use it to traverse the whole list. STRE stores this

type of inverted index in each CSP.

To search the file that contains querying keywords, STRE

builds upon the idea of sharing similar to the second naive

approach. However, instead of sharing the keyword itself,

STRE shares the first node (to be consistent, we also call it as

trapdoor) mapped by the keyword. The advantage is that if the

CSPs reconstruct the trapdoor, they can individually traverse

the inverted file list and return search results.

To achieve our security goals, we need to overcome the

following three challenges: (i) how to prevent CSPs from

knowing the file content? (ii) how to encrypt the inverted

index so that the CSP can efficiently search but learn nothing?

(iii) how to design a protocol for multi-party secret

reconstruction to ensure robustness? In what follows, we

describe the de- tailed construction of STRE, as well as how

we tackle these challenges.

Figure2 A Toy Example for Encrypted File Encoding and Reconstruction

1) Setup Phase: The setup phase initializes the underly-

ing cryptographic primitives, including two symmetric-

key encryption schemes: SKE1 = (Gen, Enc, Dec) and

SKE2 = (Gen, Enc, Dec), three pseudorandom

functions P(,), Q(,) and R(,). The phase also

assigns a master secret key (sk1, sk2, sk3, sk4) to the

user.

We assume the existence of some form of public-key

infras- tructure where CSPs have registered their public

keys, and all the entities can look up these public keys. In

this way, i) a CSP can authenticate the identities of the

other CSPs during collaborative search; ii) the user can

authenticate the CSPs so that he/she can be sure that the

retrieval protocol is run with the same CSPs that he/she

previously ran the storage protocol with.

2) Storage Protocol: The storage protocol is for users to

encrypt and distribute their files to multiple CSPs. Before

uploading the files to the CSPs, the user encrypts the

collection of files with sk3 using SKE1 and encodes

the ciphertext of them with erasure coding. Note that

since the files have been encrypted, we can just use

Rabin’s information dispersal algorithm (IDA) [17] in

STRE, which does not provide any confidentiality

guarantee.

 Each encrypted file is divided into t equal-size native

chunks to be stored at t CSPs. Moreover, the native

chunks can be encoded by linear combinations to form

another (n t) code chunks to be stored at the other (n t)

CSPs. This enables us to reconstruct the encrypted file

from any t out of n chunks so as to enhance the

reliability of the outsourced files.

Fig. 2 shows a toy example demonstrating how to achieve

reliability for n = 4 and t = 2. The encrypted file is split into

two native 256-bit chunks (i.e., A and B), which are then

encoded into another two code chunks with linear

combination. Fig. 2 uses the trivial linear combination as C =

A + B and D = A B and abuses ―+‖ and ― ‖ as the

operations in

Galois field GF(2
8
)1. All the chunks are sent to the CSPs

for

storage. Suppose two CSPs fail and lose B and D. Since B

is the linear combination of A and C, the user can easily revert

and compute B from A and C. The encrypted file is finally

reconstructed.

To preserve the privacy of the inverted index (see the

beginning of this section), we follow the approach of [7], [8].

In particular, we build the encrypted index in the following

way. As shown in Fig. 3, for each file containing a keyword w,

we assign it with a node, and the node is afterwards encrypted

Figure 3 Encrypted Index

with SKE2 and stored in an array A. Each (plain) node

contains three types of fields: i) file identifier field records the

unique the identifier of the file containing w; ii) key field

stores the symmetric key used for the encryption of the next

node (the first node is encrypted with a random key Kw which

will be elaborated later); iii) address field stores the address of

the encrypted version of next node in array A
2
. In this way, if

we can decrypt and obtain the first node of the inverted list in

A, all the identifiers of the files containing w can be obtained

in a recursive way.

Besides the array, a look-up table T is included to record

the locations and encryption keys of the first node for all

the inverted lists. Roughly, for the keyword w, we store the

location (in A) and encryption key Kw of the first node of its

inverted list in T[Q(sk2, w)]. We also blind the content (i.e.,

 International Journal on Applications in Information and Communication Engineering

Volume 4: Issue 2: April 2018, pp 1 - 11. www.aetsjournal.com ISSN (Online) : 2394 - 6237

--

6

−

−
−

the location and encryption key of the first node) of T[Q(sk2,

w)] with P(sk1, w). We note that the above operations are to

make the table T look as random as possible from the

adversary without user’s secret keys.

Finally, the user uploads the encrypted file chunks as well

as the index to each CSP. We note that the index is replicated

in each CSP for n 1 fault tolerance. On the other hand,

even the CSPs accesses the index, they cannot get any useful

information as the index has been protected using

sophisticated encryption approaches.

3) Retrieval Protocol: In order to achieve privacy preserving

keyword search over multiple clouds, we propose a novel

retrieval protocol that consists of two stages: i) query

sharing stage; ii) and reconstruction stage. The query

sharing stage generates a (t, n)-secret sharing on the user’s

keyword query and distribute the shares to n CSPs. The

reconstruction stage allows the user to obtain the query

results when at least t (t n) CSPs are functioning.

In traditional single CSP storage [7], to retrieve the files

including a certain keyword w, the user has to submit the

trapdoor as P(sk1, w) and Q(sk2, w). Recall the encrypted index

construction, the CSP can use Q(sk2, w) to identify the

location of Kw and Addrw about the inverted list of w,

followed by removing the blinding with P(sk1, w). After

obtaining the entrance information Kw and Addrw, the CSP can

recursively identify and decrypt each node in the inverted list.

The key idea in STRE is sharing the trapdoor. In particu-

lar, instead of sending a whole trapdoor, we perform secret

sharing on the trapdoor, and distribute each trapdoor share

to the respective CSP for search. One benefit of the sharing-

based approach is trapdoor security. Specifically, the

adversary compromising some CSPs can only see a limited

number of (random) shares, and not learn the whole trapdoor,

or the information that two set of (trapdoor) shares are from

the same trapdoor. Hence, the search pattern is hidden

before the collaborative search. On the other hand, STRE

enjoys the advantage over the second naive approach (see

Section IV-B) as it uses an inverted index and shares the

entrance information of the inverted list, avoiding the linear-

growth reconstruction and comparison.

To make secret sharing on (P(sk1, w), Q(sk2, w)), we lever-

age the idea of multiple secret sharing. Specifically, we

build a secret matrix consisting of P(sk1, w) and Q(sk2, w), and

some random values which are used for checking the

correctness of reconstruction. In addition, another ―mirror

matrix‖ defined the same as the secret matrix except replacing

P(sk1, w) and Q(sk2, w) with zero, is published. Later on, when

the secret matrix is reconstructed, the mirror matrix can be

used for partially cheating detection. STRE finally shares the

secret matrix with multiple secret sharing scheme [14] and

distributes the share vector as trapdoor share for each CSP.

In the reconstruction stage, our approach uses the secure

data aggregation scheme [18]. This is based on the observation

that each CSP obtains a trapdoor share (in the form of a

vector) from the user, and it is desirable to collect a threshold

number of trapdoor shares together and further reconstruct

the secret P(sk1, w) and Q(sk2, w). For security concern, it

poses two requirements: i) each CSP should protect its

trapdoor share, before obtaining the trapdoor share from other

CSPs; ii) each available CSP should finally reconstruct the

secret.

To address the above two concerns, STRE follows a two-

stage distribution. In particular, upon receiving the trapdoor

share from the user, each CSP creates a zero matrix Bi, and

writes the trapdoor share into the corresponding column of the

matrix.

We note that the sum matrix the collection of all the

trapdoor shares, which has sufficient information for

reconstructing P(sk1, w) and Q(sk2, w). In the first distribution

of STRE, each CSP makes (n, n)-secret sharing on Bi and is

tribute the n shares to the corresponding CSP. In this way,

each CSP is able to obtain n ―sub-shares‖ respectively from

B1, B2, . . . , Bn, and aggregates these sub shares into one share.

We note that the aggregated share is also a share of B due to

the additive homomorphism of secret sharing. Hence, in the

second distribution of STRE, each CSP distributes its locally

aggregated share to any other CSP, afterwards sums up all the

aggregated shares from the other CSPs and itself, and obtains

the collection of trapdoor shares B. We claim that the two-

stage distribution can meet our requirements, as it does not

need any CSP to expose its trapdoor share beforehand, and all

the CSPs collaborate to concurrently reconstruct B.

After obtaining B, each CSP recovers the secret matrix with

the multiple secret sharing scheme [14]. It also checks the

correctness of reconstruction by comparing the reconstructed

secret matrix with the mirror matrix. If the correctness check

is passed, the CSP picks out P(sk1, w) and Q(sk2, w), uses them

to search the files containing the underlying keyword w [7],

[8] and returns back the corresponding encrypted file

chunks. The user, after collecting all the related file chunks

from several CSPs, groups these chunks according to the

unique file identifier, recovers the whole encrypted file with

erasure coding, and finally decrypts them, obtaining the search

results. In summary, STRE can tolerate the failure of (n t)

CSPs with an expense of additional (n t)/t times storage

space in total. The reason is the erasure coding, which leads

to n/t storage blowup. It is also worth noting that although

our current discussion is focused on CSPs that store the same

amount of file chunks, our mechanism can be easily extended

to a more flexible storage strategy. For example, we can encode

the encrypted file into more than n chunks and store more than

one chunk in the cheaper or more reliable CSP.

V. SECURITY ANALYSIS

We now analyze the security of STRE mechanism in the

assumed honest-but-curious environment. Our analysis is in

terms of reliability, semantic security, trapdoor security and

robustness, which were defined in Section III-B.

 International Journal on Applications in Information and Communication Engineering

Volume 4: Issue 2: April 2018, pp 1 - 11. www.aetsjournal.com ISSN (Online) : 2394 - 6237

--

7

−

·

·

⊕

· ·

· ·

A. Reliability

Recall from Section IV-C2 that the encrypted file (say cf)

is encoded by (n, t)-erasure coding. Specifically, cf is divided

into t native chunks, using which another n t code chunks are

constructed through linear combination. This operation can be

viewed as (c1, c2, . . . , cn) = E · cf

where c1, . . . , ct are the native chunks, ct, . . . , cn are the code

chunks and cf is used (with a slight abuse of notation) to

express the encrypted file in chunk form. E is a (n t)

encoding matrix which consists of a (t t) unit matrix in its

upper part. The rank of E is t, that is, any t row vectors of E

are linear independent.

During reconstruction, after obtaining any t chunks, denoted

ci1 , . . . , cit , the reconstruction is realized by selecting the

corresponding rows of E and constructing the decoding matrix

E. Note that E is invertible. Thus

which ensures reliability of STRE.

B. Semantic Security

We begin by considering file confidentiality. First of all,

each file in the collection is encrypted using a symmetric-

key encryption scheme. Since the erasure code is used for

encoding the encrypted file, and it is retrievable in the case at

least t encoded chunks are obtained, which does not affect the

file confidentiality. Hence, the security of files can be reduced

to that of the used symmetric-key encryption scheme in file

encryption.

Secondly, though a copy of the encrypted index is stored at

each CSP, it is just used for recording the relation of keywords

and files, and useless for extracting information from plain

files. Based on the above two points, we can claim that the

index and the collection of encrypted file chunks never leak

any partial information about the original files except the file

lengths.

The second important requirement to ensure semantic se-

curity is to protect the dynamic process, during which an

adversary can dynamically submit keyword queries and receive

results to help launch attack. Precisely, semantic security

requires that no partial information except access pattern and

search pattern is leaked during keyword-based queries. Note

that in file retrieval, the process of search is mainly executed

with the reconstructed trapdoor (i.e., P(sk1, w) and Q(sk2, w)

in STRE mechanism) and the encrypted index. Thus, in order

to show STRE mechanism achieves this security requirement,

following the simulation-based definition from Curtmola and

colleagues [7], we need to build a simulator, which is able

to learn the allowable leakage, and attempts to simulate the

array A, look-up table T and (P(sk1, w), Q(sk2, w)) as random

objects from adversary’s perspective.

Before describing the simulator, we introduce a set of

notations. Suppose the file collection f has been queried

for q times. Without loss of generality, we can denote the

queried keywords w1, w2, . . . , wq. We use f (wi) to denote a

lexicographically ordered vector consisting of the identifiers

of files in f containing wi. Obliviously, the simulator must

know the access pattern (see its definition in Section III-B)

f (w1), . . . , f (wq). We build the simulations as follows.

 Build A
∗
 to Simulate A. The simulator builds A

∗
 as

follows. It assign random strings (with the same length)

for each file identifier in the sets f (w1) through f (wq),

 and put these random strings in random positions of

 ―encryptions‖ (random strings in fact) as A except that the

result is stored in random positions rather than the real encryp-

tions output by SKE2 stored in positions derived from R(sk3,).

Since either the secret key sk4 or the random keys used to

encrypt the node in inverted list cannot be obtained by

adversary with all but negligible probability, the adversary

cannot distinguish the real random strings from the output by

SKE2 or R(sk4,), and hence A∗ is indistinguishable from A.

 Build T
∗
 to Simulate T. Similar to the simulation above,

the simulator has obtained the random string (say γi
∗) for

the first node in each set f (w1), . . . , f (wq). The simulator

just picks two random strings respectively for simulating

P(sk1, wi) and Q(sk2, wi)

for i = 1, . . . , q. In particular, the simulator stores the

(simulated) result γi
∗ νi

∗ in the position ξi
∗ of T

∗
. In

summary, T
∗
 consists of q encryptions generated by XOR-

ing a (simulated) message with a random string νi
∗ and stored

in the position ξi
∗ . For the pseudo-randomness of P(sk1,) and

Q(sk2,), the adversary cannot distin- guish ξi
∗ and νi

∗ from

respective output. Hence T
∗
 is Build (Pi

∗ , Q
∗
i) to

Simulate (P(sk1, wi), Q(sk2, wi)). The reconstructed

trapdoor can be easily simulated as (ξi
∗ , νi

∗) for i = 1, 2, . . .

, q. The pseudo-randomness of P(sk1,) and Q(sk2,)

guarantees the indistinguishabil- ity of (ξi
∗ , νi

∗) from

(P(sk1, wi), Q(sk2, wi)).

C. Trapdoor Security

We now prove that the trapdoor security of STRE mecha-

nism can be reduced to the security of multiple secret sharing

scheme [14].

Suppose an adversery has a non-negligible advantage in

winning the game elaborated in Section III-B. Our aim is to

build a simulator S which is able to distinguish two different

secrets with (t − 1) shares in multiple secret sharing scheme

[14] by running A. We provide the simulation as follows.

After executing and getting a collection of files f , runs the

storage protocol on f to obtain the secret key (sk1, sk2, sk3,

sk4), a collection of (encrypted) chunks and the (encrypted)

index. is given the encrypted index.

For ’s trapdoor query (, w0, w1), where < t,

responds as follows.

 International Journal on Applications in Information and Communication Engineering

Volume 4: Issue 2: April 2018, pp 1 - 11. www.aetsjournal.com ISSN (Online) : 2394 - 6237

--

8

- Construct two same secret matrix S0, S1, and

respectively write P(sk1, wi) and Q(sk2, wi) into Si for i =

0, 1.

- Submit (C, S0, S1) to the challenger which returns the

trapdoor shares vi of Sb on each i ∈ C, where b ∈R

{0, 1} is kept secret from A and S.

- Return the set of trapdoor shares {vi}i∈C back to A.
Finally, outputs ’s submission b

′
 which is the

guess of b.

It is clear that the view of A when run as a sub-routine

By is identical to the view of the adversary in the game

elaborated in Section III-B. Thus, we can claim that if the

adversary succeeds in the game of Section III-B, there exists

a simulator having the same probability on distinguishing two

different secrets from multiple secret sharing scheme with less

than t shares.

D. Robustness

The CSP authenticates the identity of the other CSPs during

the collaborative search. If the authentication fails that means

the sub-shares distributed by CSPs have been either modified

or substituted, and the protocol is aborted. Since the share

matrix is imposed with (n, n)-secret sharing and any incorrect

sub-share will lead to the failure of reconstruction, none of

the CSPs can get the other CSPs’ shares properly. If the

authentication succeeds, as elaborated in our protocol, each

CSP will get correct distributions from all the other CSPs and

successfully builds the share matrix for further search.

VI. EXPERIMENTAL STUDY

Our experiments were run using as client machine a Linux

Mint 14 machine with Intel(R) Core(TM)2 Duo CPU

clocked

 International Journal on Applications in Information and Communication Engineering

Volume 4: Issue 2: April 2018, pp 1 - 11. www.aetsjournal.com ISSN (Online) : 2394 - 6237

--

9

· · · ·

· · · ·

Fig. 4. File Storage and Retrieval Performance (the leftmost column labeled B

in each subfigure is the time cost of baseline approach, while the following

columns are for STRE in different cases)

at 2.40 GHz and 2 GB of memory. We simulate the multiple

clouds environment by using several 32-bit Linux T1 Micro

servers in Amazon EC2 platform. Note that, although this is

not an actual multi-cloud storage environment, it is sufficient

for the purpose of our experiment, since we virtualize a large

number of connected and collaborative cloud computers into a

logical multi-cloud environment. This experimental setting is

also helpful for simulating storage crash through erasing the

stored data at the servers in Amazon EC2 platform.

We use a real world dataset, namely the Enron email

dataset [9] as our corpus. We extract a subset of emails

(i.e., a total number of 12008 emails in the subdirectory

beck-s) from Enron dataset. This dataset is suitable as it can

simulate organizations storing emails to a remote server in

encrypted form and wishing to search through them from

time to time. Before testing, we pre-processed the dataset

by generating keywords and permutation tables for R(,),

Q(,). Specifically, we cleaned up the corpus through the

Porter stemming algorithm [19], removed content-

independent words with a spelling corrector, and built

inverted index for the most 1500 frequent keywords for

generating keywords. The prefix method [20] was used to

generate permutation tables serving as R(,) and Q(,).

We adopt a classic symmetric searchable encryption scheme

SSE-1 [7] as a baseline approach, which shares an identical in-

dex with STRE mechanism but does not consider the

reliability of the searchable encrypted data.

A. Performance of File Storage

In this set of experiments, we aim to evaluate the efficiency

of our storage protocol by comparing the total time taken to

upload the files using our protocol with that using the baseline

approach. In Fig. 4(a), Fig. 4(b) and Fig. 4(c), we respectively

fix the threshold t = 2, 3 and 4, and vary the number of CSPs

from t + 1 to 10.

It is not surprising to see that our STRE mechanism takes

more time to complete the file storage than the baseline

approach. Note that the index construction time is actually

neg- ligible (nearly one second) in all the tests. Our file

encryption time is slightly longer than that of the baseline

approach and also increases with the number of CSPs. This is

because we utilize the Plank’s fast Galois Field Arithmetic

Library [21] to encode the encrypted files into multiple chunks

to be sent to the multiple CSPs, while the baseline approach

just needs to encrypt the files one by one. Our transmission

time is relatively longer than the baseline approach, which is

also due to the existence of the multiple CSPs. The user needs

to send all the file chunks to n CSPs rather than just

communicating with one CSP in the baseline approach.

Regarding storage space, the index consisting of the array

and look-up table takes up to 8736 KB. Besides this, in file

encryption, SSE-1 [7] (i.e. our baseline approach), produces

25 MB ciphertext, while each CSP in STRE mechanism just

needs 1/t times of this space to store the encoded encrypted

files whatever n is. This enables us to save nearly (t 1)/t

proportion of space for each individual CSP.

B. Performance of File Retrieval

Without loss of generality, we randomly pick a query

keyword and then evaluate the efficiency of retrieving all the

files containing the query keyword. Note that in this

evaluation, we assume the worst case, that is, all the n CSPs

participate in the collaborative search but only t of them

return the query results.

One query with the keyword America returns 961 files in

our corpus. Fig. 4(d), Fig. 4(e) and Fig. 4(f) show the time

taken to execute this query when varying the number of CSPs

and threshold t. As expected, to provide reliability guarantee,

our STRE mechanism needs more time to retrieve the files

compared to the baseline approach. Specifically, the retrieval

protocol in STRE mechanism consists of two processes and

hence it requires two rounds of interaction with the CSPs

as well as encrypted file reconstruction. Though the search

and file decryption are slower than the baseline approach, our

retrieval protocol is more efficient in terms of

transmission. The main reason is that the multi-cloud setting

enables us to concurrently receive data with multiple threads

at the user side. To sum up, our STRE mechanism achieves

both security and reliability without introducing significant

overhead compared to the baseline approach, since our

execution time is still within seconds.

VII. RELATED WORK

Since our work is related to both privacy-preserving key-

word search and reliability issues in the cloud, we give a brief

review of these two threads of works.

A. Privacy-Preserving Keyword Search

The problem of searching on encrypted data can be solved

in its most generic case using the work of Goldreich and

Ostrovsky [22] [23] on oblivious RAMs. Unfortunately, this

approach requires multiple interactions and has a high compu-

tation overhead. Even though the recent work [24] has greatly

improved the efficiency of oblivious RAMs, it is based on

a stronger assumption over the architecture. That is, either

hybrid cloud setting or a public cloud equipped with trusted

computing base is required such that the ORAM nodes and

 International Journal on Applications in Information and Communication Engineering

Volume 4: Issue 2: April 2018, pp 1 - 11. www.aetsjournal.com ISSN (Online) : 2394 - 6237

--

10

oblivious load balancer can be deployed in a fully trusted

environment. Therefore, for higher efficiency, the security

requirements must be weakened appropriately by allowing

some limited information (i.e., the access pattern and search

pattern) about the messages and the queries revealed to the

adversary.

Based on this intuition, searchable encryption was first

introduced by Song et al. [4], in which a user stores his/her

encrypted data in a semi-trusted server and later searches with

a certain keyword. In their proposal [4], each word is inde-

pendently encrypted under a specified two-layered encryption.

Given a token (i.e., trapdoor) for a keyword, the server can

strip the outer layer and assert whether the inner layer is of

the correct form. Later, Goh [12] introduced bloom filter [25]

to construct secure indexes for keyword search, which allows

server to check if a file contains a certain keyword without

scanning the entire file. Chang et al. [11] offered similar

solutions to the problem of privacy-preserving keyword search

through building pseudo-random bits to mask a dictionary-

based keyword index for each file. A formal treatment to

symmetric searchable encryption was presented by Curtmola

et al. [7]. They provided improved security notions for

symmetric searchable encryption and presented ―index‖

approach, in which an array and a look-up table are built for

the entire file collection. Each entry of the array is used to

store an encryption of file identifier associated with a certain

keyword, while the look-up table enables one to efficiently

locate and decrypt the appropriate entry from array.

Toward extending the functionalities of privacy preserving

keyword search, Li et al. [26] considered the problem of fuzzy

keyword search over encrypted data, and proposed a solution

with the wildcard-based fuzzy set construction method. Cao et

al. [27] solved the challenging problem of privacy-preserving

multi-keyword ranked search, and proposed a scheme based

on secure inner product computation. Sun et al. [28] then

made improvements on the multi-keyword ranked search

scheme [27], and presented an efficient scheme under a

stronger threat model.

Aiming at providing searchable encryption with efficient

update, Liesdonk et al. [15] presented two schemes: the first

one transforms each unique keyword to a searchable

representation such that user can keep track of metadata items

via appropriate trapdoor. The second one deploys a hash chain

by applying repeatedly a hash function to an initial seed. Since

only the user knows the seed, he/she can traverse the chain

forward and back- ward, while the server is just able to

traverse the chain forward only. Kamara et al. [8] provided the

first symmetric searchable encryption construction satisfying

sublinear search time, security against adaptive chosen

keyword attacks, compact index and the ability to add and

delete files efficiently. Their solution is based on Curtmola et

al’s work [7], but adds another data structure namely deletion

table and deletion array to record the metadata for the

added/deleted files, which can be utilized to adaptively change

the appropriate entries in search array and search table. The

dynamic symmetric searchable encryption has been extended

to paralleled setting [10]. Recently, Cash et al. [29]

implemented a prototype supporting multiple keyword search

and dynamic updates for large databases. Naveed et al. [30]

proposed a dynamic searchable encryption scheme via blind

storage for further hiding filename and length. Stefanov et al.

[31] and Hahn et al. [32] improved dynamic searchable

encryption on security and efficiency respectively.

Some security concerns about existing searchable

encryption schemes have been raised. Islam et al. [33]

introduced a novel attack that exploits data access pattern

leakage to disclose significant amount of sensitive information

using a modicum of priori knowledge. Liu et al. [16] showed

that the search pattern leakage can result in non-trivial risks.

They proposed two concrete attacks exploiting user’s search

pattern and some auxiliary background knowledge to disclose

the underlying keyword in user’s query.

For the aim of complete security, although oblivious RAM-

based protocol [22], [23] can be used for completely hiding

access pattern and search pattern, as we stated before they

are computationally intensive and do not scale well for real

world datasets. The recent proposals in [33], [16] for the

same purpose are based on adding dummy keywords/files to

obfuscate query/result, causing communication overhead and

effective in just limited cases. As with existing work, our

mechanism cannot keep the privacy of access pattern, but it is

able to protect search pattern before collaborative search.

In summary, we note that existing works enable efficient,

flexible and dynamic privacy-preserving keyword search, but

fail to consider reliability of outsourced data. Specifically,

existing works on searchable encryption rely on a single

server/CSP, which could still be vulnerable to a single-point of

failure [34] even though cloud storage provides an on-demand

remote backup solution.

B. Reliable Cloud Storage

Ensuring data availability in distributed storage system is

critical, since node failures are prevalent. The classical

approach is via erasure codes, which encodes original data

and stripes encoded data across multiple nodes. Erasure

codes can tolerate multiple failures and allow the original data

to remain accessible by decoding the encoded data stored in

other surviving nodes. Recent studies (e.g., [35], [36] to list

a few) proposed regenerating codes for distributed storage.

Regenerating codes built on the concept of network coding

aim at intelligently mixing data blocks that are stored in

existing storage nodes, and then generating data at a new

storage node. It is shown that regenerating codes reduce the

data repair/recovery traffic over traditional erasure codes

subject to the same fault tolerance level.

Unlike existing work on reliable storage, which builds with

a proxy based architecture and makes the proxy server as an

interface for storage repair between client applications and

clouds, reliability in this paper is considered as result

recovery. That is, after extracting at least some partial results

from CSPs, the user locally recovers the clear files containing

the searched keyword.

 International Journal on Applications in Information and Communication Engineering

Volume 4: Issue 2: April 2018, pp 1 - 11. www.aetsjournal.com ISSN (Online) : 2394 - 6237

--

11

VIII. CONCLUSION

In this paper, we propose the STRE mechanism, to promote

reliability of outsourced searchable encrypted data. In STRE,

user’s searchable encrypted data is strategically distributed to

and stored at multiple CSPs, so as to achieve high crash tol-

erance. Besides reliability, the STRE mechanism also affords

efficient and flexible storage properties and partially hidden

search pattern. Extensive experiments demonstrate the effi-

ciency of our scheme. As indicated in the experiment results,

the largest overhead of our proposed mechanism compared

with the classical approaches is communication time. This is

because increasing the number of CSPs implies adding data

redundancy. Thus, to reduce data redundancy and save storage

and bandwidth, we will explore the regenerating code

methods, which have been recently utilized to minimize the

bandwidth for file retrieval while tolerating failures.

References

[1] J. Weinman. (2013) Will multiple clouds evolve into the intercloud?
[2] Y. Zhu, H. Hu, G.-J. Ahn, and M. Yu, ―Cooperative provable data posses-

sion for integrity verification in multicloud storage,‖ IEEE Transactions

on Parallel Distributed Systems, vol. 23, no. 12, pp. 2231–2244, 2012.
[3] D. Owens, ―Securing elasticity in the cloud,‖ Communications of the

ACM, vol. 53, pp. 46–51, 2010.

[4] D. X. Song, D. Wagner, and A. Perrig, ―Practical techniques for searches
on encrypted data,‖ in IEEE Symposium on Security and Privacy, 2000,

pp. 44–55.

[5] S. Kamara and K. Lauter, ―Cryptographic cloud storage,‖ in Financial
Cryptography and Data Security, ser. Lecture Notes in Computer

Science. Springer Berlin Heidelberg, 2010, vol. 6054, pp. 136–149.

[6] H. Blodget. (2011) Amazon’s cloud crash disaster permanently de-
stroyed many customers’ data.

[7] R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky, ―Searchable

symmetric encryption: improved definitions and efficient constructions,‖
in ACM Conference on Computer and Communications Security, 2006,

pp. 79–88.

[8] S. Kamara, C. Papamanthou, and T. Roeder, ―Dynamic searchable
symmetric encryption.‖ in ACM Conference on Computer and Com-

munications Security, 2012, pp. 965–976.

[9] B. Klimt and Y. Yang, ―The enron corpus: A new dataset for email
classification research,‖ in Machine Learning: ECML 2004, ser. Lecture

Notes in Computer Science, 2004, vol. 3201, pp. 217–226.

[10] S. Kamara and C. Papamanthou, ―Parallel and dynamic searchable
symmetric encryption,‖ in Financial Cryptography and Data Security,

ser. Lecture Notes in Computer Science, 2013, vol. 7859, pp. 258–274.

[11] Y.-C. Chang and M. Mitzenmacher, ―Privacy preserving keyword
searches on remote encrypted data.‖ in Applied Cryptography and

Network Security, ser. Lecture Notes in Computer Science, vol. 3531,

2005, pp. 442–455.
[12] E.-J. Goh, ―Secure indexes,‖ IACR Cryptology ePrint Archive 216, Tech.

Rep., 2003.

[13] A. Shamir, ―How to share a secret,‖ Communications of the ACM, vol.

22, no. 11, pp. 612–613, 1979.

[14] L. Bai and X. Zou, ―A proactive secret sharing scheme in matrix
projection method,‖ International Journal of Security and Networks, vol.

4, no. 4, pp. 201–209, 2009.

[15] P. van Liesdonk, S. Sedghi, J. Doumen, P. H. Hartel, and W. Jonker,
―Computationally efficient searchable symmetric encryption,‖ in Secure

Data Management, ser. Lecture Notes in Computer Science, 2010, vol.

6358, pp. 87–100.
[16] C. Liu, L. Zhu, M. Wang, and Y. an Tan, ―Search pattern leakage in

searchable encryption: Attacks and new constructions,‖ Information

Sciences, vol. 265, no. 1, pp. 176–188, 2014.
[17] M. O. Rabin, ―Efficient dispersal of information for security, load

balancing, and fault tolerance,‖ Journal of the ACM, vol. 36, no. 2, pp.

335–348, Apr. 1989.
[18] X. Zhao, L. Li, G. Xue, and G. Silva, ―Efficient anonymous message

submission,‖ in IEEE INFOCOM, 2012, pp. 2228–2236.

[19] M. F. Porter, ―An algorithm for suffix stripping,‖ Program: Electronic

Library and Information Systems, vol. 14, pp. 130–137, 1980.

[20] J. Black and P. Rogaway, ―Ciphers with arbitrary finite domains,‖ in

Topics in Cryptology - CT-RSA 2002, ser. Lecture Notes in Computer

Science, 2002, vol. 2271, pp. 114–130.
[21] J. S. Plank, ―Fast galois field arithmetic library in c/c++,‖ University of

Tennessee, Tech. Rep., 2007.

[22] R. Ostrovsky, ―Efficient computation on oblivious rams,‖ in ACM
symposium on Theory of computing, 1990, pp. 514–523.

[23] O. Goldreich and R. Ostrovsky, ―Software protection and simulation on

oblivious rams,‖ Journal of the ACM, vol. 43, pp. 431–473, 1996.
[24] E. Stefanov and E. Shi, ―Oblivistore: High performance oblivious cloud

storage,‖ in IEEE Symposium on Security and Privacy, 2013, pp. 253–

267.
[25] B. H. Bloom, ―Space/time trade-offs in hash coding with allowable

errors,‖ Communication of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[26] J. Li, Q. Wang, C. Wang, N. Cao, K. Ren, and W. Lou, ―Fuzzy keyword
search over encrypted data in cloud computing,‖ in IEEE INFOCOM,

2010, pp. 441–445.

[27] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, ―Privacy-preserving multi-

keyword ranked search over encrypted cloud data,‖ in IEEE INFOCOM,

2011, pp. 829–837.

[28] W. Sun, B. Wang, N. Cao, M. Li, W. Lou, Y. T. Hou, and H. Li, ―Privacy-
preserving multi-keyword text search in the cloud supporting similarity-

based ranking,‖ in ACM Symposium on Information, Computer and

Communications Security. ACM, 2013, pp. 71–82.
[29] D. Cash, J. Jaeger, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Rosu, and

 M. Steiner, ―Dynamic searchable encryption in very-large databases:

Data structures and implementation,‖ in Network and Distributed System
Security Symposium, 2014.

[30] M. Naveed, M. Prabhakaran, and C. Gunter, ―Dynamic searchable

encryption via blind storage,‖ in IEEE Symposium on Security and
Privacy, 2014, pp. 639–654.

[31] E. Stefanov, C. Papamanthou, and E. Shi, ―Practical dynamic searchable

encryption with small leakage,‖ in Network and Distributed System
Security Symposium, 2014.

[32] F. Hahn and F. Kerschbaum, ―Searchable encryption with secure and ef-

ficient updates,‖ in ACM Conference on Computer and Communications
Security, 2014, pp. 310–320.

[33] M. Islam, M. Kuzu, and M. Kantarcioglu, ―Access pattern disclosure on

searchable encryption: Ramification, attack and mitigation,‖ in Network
and Distributed System Security Symposium, 2012.

[34] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,

 G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, ―A view
of cloud computing,‖ Communication of the ACM, vol. 53, no. 4, pp.

50–58, 2010.

[35] B. Chen, R. Curtmola, G. Ateniese, and R. Burns, ―Remote data
checking for network coding-based distributed storage systems,‖ in

ACM Workshop on Cloud Computing Security, 2010, pp. 31–42.
[36] Y. Hu, Y. Xu, X. Wang, C. Zhan, and P. Li, ―Cooperative recovery of

distributed storage systems from multiple losses with network coding,‖

IEEE Journal on Selected Areas in Communications, vol. 28, pp. 268–

276, 2010.

