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Abstract— Cloud computing is growing exponentially, whereby 

there are now hundreds of cloud service providers (CSPs) of various 

sizes. While the cloud consumers may enjoy cheaper data storage and 

computation offered in this multi-cloud environment, they are also in 

face of more complicated reliability issues and privacy preservation 

problems of their outsourced data. Though searchable encryption 

allows users to encrypt their stored data while preserving some search 

capabilities, few efforts have sought to consider the reliability of the 

searchable encrypted data outsourced to the clouds. 

In this paper, we propose a privacy-preserving STorage and 

REtrieval (STRE) mechanism that not only ensures security and 

privacy but also provides reliability guarantees for the outsourced 

searchable encrypted data. The STRE mechanism enables the cloud 

users to distribute and search their encrypted data across multiple 

independent clouds managed  by  different  CSPs,  and is robust even 

when a certain number of CSPs crash. Besides    the reliability, STRE 

also offers the benefit of partially hidden search pattern. We evaluate 

the STRE mechanism on Amazon EC2 using a real world dataset and 

the results demonstrate both effectiveness and efficiency of our 

approach. 

 

Keywords—     searchability, privacy, and reliability 

I. INTRODUCTION 

loud computing is growing exponentially, whereby there 

are now hundreds of cloud service providers (CSPs) of 

various sizes [1]. A concept of a cloud-of-clouds (also called 

an intercloud) is proposed and studied in recent years [1], [2].     

In a cloud-of-clouds, we disperse data, with a certain degree  

of redundancy, across multiple independent clouds managed 

by different vendors, such that the stored data can always be 

available even if a subset of clouds becomes inaccessible. 
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The multi-cloud environment [2] offers plenty of new op- 

portunities and avenues to cloud consumers. Cloud consumers 

will be able to leverage not just one cloud provider, but many, 

to solve their diverse needs and switch providers if one ceases 

service. To promote the multiple clouds, IEEE has initiated 

Intercloud Testbed [1] that helps make interactions among 

multiple clouds a reality. 

However, while cloud consumers may enjoy cheaper data 

storage and powerful computation capabilities offered by 

multiple clouds, consumers also face more complicated 

reliability issues and privacy preservation problems of their 

outsourced data. More specifically, as it is difficult to obtain 

clear guar- antees on the trustworthiness of each CSP [3], 

cloud con- sumers are typically suggested to adopt searchable 

encryption techniques [4] [5] to encrypt their outsourced data 

in a way  that the encrypted data can be directly searched by 

the CSPs without decryption. Despite many efforts devoted to 

improving efficiency and security of the searchable 

encryption, there is little consideration on ensuring the 

reliability of the searchable encrypted data. Though cloud 

storage provides an on-demand remote backup solution, it 

inevitably raises dependability con- cerns related to having a 

single point of failure and to possible storage crash. 

Existing reliability guarantees solely rely on each CSP’s 

own backup solution, which however could be a single-point 

of failure. For instance, the crash of Amazon’s elastic 

computing service in 2011 took some popular social  media  

sites  off-  line for a day and one energy department 

collaboration site unavailable for nearly two days. More 

seriously, this crash   has permanently destroyed many 

customers’ data with serious consequences for some users [6]. 

It is worth noting that a com- prehensive solution to 

simultaneously ensuring searchability, privacy, and reliability 

on data outsourced to multiple clouds  is not trivial to define. 

Simply replicating data at  multiple CSPs is the most 

straightforward method, which however is the least cost-

efficient approach. To the best of our knowledge, we are not 

aware of any existing work that addresses the three 

requirements in a comprehensive manner. 

To address the aforementioned challenges, we propose a 

privacy-preserving STorage and REtrieval (STRE) mechanism 

that enables cloud users to distribute and search their 

encrypted data in CSPs residing in multiple clouds while 

obtaining reliability guarantees. We have designed efficient 

and secure multi-party protocols based on the secret sharing 

mechanism, to ensure that a user will be able to reconstruct the 

query results even if (n    t) CSPs have been compromised, 
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where    n is the  total number  of CSPs storing  the user’s files 

and t   is a threshold value predefined. Moreover, the STRE 

mechanism also offers better protection on the use’s search 

pattern compared to existing works. Specifically, many 

existing works on searchable encryption would completely 

disclose the user’s search pattern that indicates whether two 

searches are for the same query keyword or not [7][8]. In our 

STRE mechanism, this pattern leak risk is lowered because the 

search is conducted distributed and the search pattern will be 

revealed only if there are more than t CSPs collude. 

In this paper, we provide an  in-depth  security  analysis,  

and present the results of our experimental study. We build 

a testbed in Amazon EC2 to simulate the multi-cloud en- 

vironment and evaluate our mechanism using a real world 

dataset (i.e., the Enron dataset [9]). Our experimental results 

demonstrate the efficiency of our proposed approach. The rest 

of the paper is organized as follows. In Section II, we discuss 

some preliminary notions. In Section III, we present the 

system model and design goals. The proposed STRE 

mechanism is provided in Section IV. Security analysis and 

experimental results are respectively shown in Section V and 

Section VI. Section VII reviews the related works. Finally, 

Section VIII draws the conclusion of this paper. 

II. PRELIMINARIES 

For better understanding, we first give a brief review of the 

idea of searchable encryption, and then introduce the concept 

of secret sharing that forms our approach. 

A. Searchable Encryption 

Searchable encryption is a cryptographic primitive, which 

allows users to execute keyword-based search directly on en- 

crypted data without decryption. Some scheme [4] implements 

the searchability via a special ciphertext that allows searching, 

while most other schemes [10], [8], [7], [11], [12] make the 

client generate a searchable encrypted index. Here, we briefly 

introduce the generic framework of searchable encryption, 

which will be followed by our mechanism. 

Basically, a searchable encryption scheme includes four 

stages. Initially, a user encrypts a set of files into ciphertexts 

and a sophisticated index. Both  file  ciphertexts  and  index  

are uploaded to a remote  server  for  storage.  Later,  when  

the user wants to retrieve the files containing some keyword, 

he/she generates a trapdoor from  the  keyword  and  sends  

the trapdoor (instead of the keyword itself) to the server for 

search. The server searches with the trapdoor and returns a   

set of ciphertexts, of which the underlying files contain the 

query keyword. Finally, the user decrypts these ciphertexts 

and obtains the plain files. 

This work does not focus on optimizing the searchable 

encryption design; instead, we focus on how to introduce 

reliability into existing searchable encryption schemes [7]. 

B. Secret Sharing 

A (n, t)-single secret sharing scheme [13] is a randomized 

protocol for the distribution of secret s among a set of n parties 

such that the recovery of secret is possible with at least t 

shares. 

In this paper, we utilize single secret  sharing  in  a  spe-  

cial case, namely (n, n)-single secret sharing, which can be 

achieved in linear time complexity. Suppose a secret s is to be 

 

v1, . . . , vn 1 are randomly chosen. We assign the share vi 

to 

ith party for i = 1, . . . , n. In order to reconstruct the 

secret 

s, n parties expose their  shares  and  compute  

   
Note that the simplified (n, n)-single secret sharing scheme 

is additive homomorphic. Specifically, suppose s and s
′
 are 

two secrets, and vi and vi
′ are respectively the ith (n, n)-

single secret share of s and s
′
. Then vi + vi

′ is the ith (n, 

n)-single secret share of s + s
′
. 

Similar to the (n, n)-single secret sharing, a (n, t)-multiple 

secret sharing scheme requires that at least t or more parties 

can pool their secret shadows and reconstruct multiple secrets. 

In the paper, we use a generic multiple secret sharing scheme 

for sharing trapdoor, which can be instantiated with Bai’s 

construction [14]. 

 

 

Figure 1. Multi-Cloud Architecture 

III. PROBLEM FORMULATION 

In this section, we introduce the system architecture, fol- 

lowed by defining the problem and presenting our security 

goals. 

A. System Model and Problem Statement 

In this work, we consider the cloud storage services offered 

in a multi-cloud environment, which involves two types of 

entities: i) Users, who store a large number of encrypted files in 

multiple clouds and execute keyword-based queries to access 

and manipulate their stored files; ii) Cloud Service Providers 

(CSPs), who possess storage and computation resources, are 

willing to cooperatively store and manage the users’ files. 

We focus on searchability of encrypted data, stored  by  

users in one or many multi-cloud service providers. 

Informally, searchability (of encrypted data) refers to the 
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ability of end users to retrieve encrypted files without having 

the CSP to decrypt it. These searches are typically carried out 

using keywords, which the client uses to locate the desired 

files. 

We formalize this notion of general keyword search problem 

on plain files in multi-cloud environment. 

Definition 1 (General keyword search): Given a user, let f 

be a collection of user files stored in a number of CSPs located 

in multiple clouds. A keyword search query (wq) issued by  

the user retrieves these files (from the CSPs), that contain the 

query keyword wq. 

In the next subsection, we extend this general keyword 

search definition to the reliable and private keyword search 

after the introduction of our security goals. 

B. Adversary Model and Design Goals 

We consider a ―honest-but-curious‖ adversary, which can 

compromise a tolerable number (t   1) of CSPs and attempt   to 

learn from the information stored in the sites of the 

compromised CSPs. 

Our design goals include the following objectives: 

Reliability. Given n CSPs, the system should still function 

if at least t (t < n) CSPs are available, where t is     a 

predefined threshold value for the system. 

Semantic Security. The system should be semantically 

secure [7] by satisfying the following two requirements. First, 

given the file index and the collection of encrypted files, no 

adversary can learn any information about the original files 

except the file lengths.  Second,  given a  set of trapdoors for a 

sequence of keyword queries, no adversary can learn any 

information about the original files except the access pattern 

(i.e., the identifiers of the files that contain the query keyword) 

and the search pattern (i.e., whether two searches are looking 

for the same keyword or not). 

Trapdoor Security. We aim to achieve the conditional 

trapdoor security. Specifically, we require that any infor- 

mation about the query keyword -including the search 

pattern- should not be leaked before the multiple CSPs’ 

collaborative search. The requirement holds even if at most (t 

1) CSPs are compromised by adversary. 

Robustness. We require that: i) when the protocol suc- 

cessfully completes, the correct files are returned and 

reconstructed by the users; ii) when the protocol aborts, even 

in the collaborative search stage, nothing is returned and CSPs 

learn nothing about the file collection or the underlying 

searched keyword. 

Among the design goals above, reliability and trapdoor 

security are new features which have not been considered yet 

in existing works of symmetric searchable encryption [4], 

[12], [11], [7], [15], [8]. Therefore, in what follows, we give 

more details about the trapdoor security. We will elaborate on 

the reliability property in the next section when the protocols 

are introduced. 

Trapdoor security is defined for protecting search pattern. 

Informally, search pattern is the information about whether  

any two queries are generated from the same keyword or not. 

Most known searchable encryption schemes [4], [12], [11], 

[7], [15], [8] allow to leak searchable pattern, and the 

limitation  has recently been exploited for extracting file 

contents [16]. 

We observe that the search pattern may be leaked in two 

ways. First, if a CSP knows the access pattern, the information 

about the identifiers of the files that contain the query 

keyword, it will have a higher success rate in guessing 

whether two queries are looking for the same keyword by 

comparing the query results. In particular, after search, the 

CSP will know the identifiers of files that contain the query 

keywords if there is no extra prevention in place. If two 

queries return the same set of files, the CSP are likely to infer 

that these two queries contain the same keyword and reveal 

the user’s search pattern. Second, the search pattern may  also  

be  leaked  in  that the searchable encryption schemes [4], 

[12], [11], [7], [15], [ 8 ] exploit deterministic trapdoor 

techniques and hence CSPs can learn whether two queries are 

for the same keyword or not. The CSPs can then store the 

deterministic trapdoors and the corresponding file identifiers 

to infer the content of the encrypted query keywords 

contained in incoming queries. 

To address the issue of the deterministic trapdoor, trapdoor 

security aims at guaranteeing that the only way for leaking 

search pattern will be restricted to the leakage of access 

pattern. In this way,  we can hide the search pattern before  

any collaborative search is carried out. 

The formalization is based on a game virtually played 

between an adversary and a challenger with a security pa- 

rameter. The adversary has  the  capability  of  compromising 

at most (t 1) CSPs and learning the information (e.g., 

ciphertexts, trapdoor shares) intended to these compromised 

CSPs. Whereas, the challenger plays the role of a legitimate 

user. Note that this game is an abstract formalization of a toy 

case or files storage and retrieval in case of two keywords, and 

it is useful to provide our security analysis later. Formally, the 

game is defined as follows. 

Challenge. The adversary claims a collection of files for 

challenge. The challenger encrypts these files into a set of 

ciphertexts and an index. The challenger outputs the index. 

Note that since the relation between files and key- words is 

just embedded in the index and the encrypted file chunks are 

useless for adversary’s keyword guess, we only provide 

adversary with the index for simplicity.  

Query. The adversary generates two keywords w0 and w1, 

and submits a trapdoor query ( , w0, w1) to the challenger. 

Notice that is a (t 1)-element set for simulating the CSPs being 

compromised. The challenger picks a random bit b, generates 

a set of trapdoor shares on wb and just outputs the shares 

intended for the CSPs in C. 

 Guess. The adversary outputs b
′ 
as the guess of b. 

We define the advantage of an adversary in this game as 

Pr[b
′
 = b] 1/2. Then, trapdoor security is defined 

below. 

Definition 2 (Trapdoor security): A keyword search mech- 

anism, specified according to Definition 1, satisfies trapdoor 
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security if all probabilistic polynomial time adversaries have  

at most a negligible advantage in the above game. 

Having defined the main security goals for our scheme, we 

revisit our Definition 1 as follows. 

Definition 3 (Reliable and private keyword search): A reli- 

able and private keyword search scheme in a multi-cloud 

environment is a keyword search (as specified in Definition 

1), which satisfies reliability, semantic security, trapdoor 

security and robustness. 

IV. STRE MECHANISM 

In this section, we first provide an overview of our proposed 

STRE mechanism followed by two naive approaches. The 

naive approach is introduced to clarify the challenges in 

design- ing scheme for the aim of searchability and reliability. 

Then, we present the detailed protocols in the STRE 

mechanism. 

A. Overview 

The STRE mechanism consists of three major phases: the 

Setup Phase, Storage Phase and Retrieval Phase. 

Setup Phase. The phase generates a master secret key from 

a security parameter and assigns the key to a user. Notice that 

the security parameter which is assumed to be known to all the 

adversaries, specifies the input size of the problem. Both the 

resource requirements of the cryptographic algorithm or 

protocol and the adversary’s probability of breaking security 

are also expressed in terms of the security parameter. 

Storage Phase. In the phase, a user takes input a col- 

lection of files and the master secret key, and generates  a set 

of file shares and a file index. The file shares and index are 

uploaded to  the  corresponding  CSP.  

Retrieval Phase. This phase includes three steps: First, to 

search the files containing a certain keyword, the user 

generates a set of trapdoor shares based on the query keyword 

and his/her master secret key. The trapdoor share is sent to the 

respective CSP. Second, the CSPs col- laborate together to 

search with their individual trapdoor share, and response the 

search results back to the user. 

Third, the user reconstructs and decrypts the results and 

obtains the clear files, each of which contains the query 

keyword. 

B. Naive Approaches 

We first describe two naive approaches and then specify 

their drawbacks. The first approach is trivial replication. In 

particular, we can replicate the single-user searchable en- 

cryption scheme to n CSPs, and each CSP stores the same 

searchable ciphertexts. Hence, even at most n 1 CSPs are 

unavailable, the remote files are still accessible with keyword 

search. However, the approach is undesirable, as it costs too 

much space for saving the redundant data. 

For reducing redundancies, while tolerating CSP failures,    

a traditional solution is erasure coding. Specifically, we can 

encode the files into a set of shares and distribute the shares   

to n CSPs, so that even a tolerable number of CSPs are 

unavailable, the shares from the rest CSPs can be used for 

reconstructing the plain files. Based on the intuition, the 

second, share-based, approach is described as follows. 

For each file, the user encrypts it and further encodes the 

ciphertext into a set of file shares. In addition, for the keyword 

related to the file (for simplicity we just assume a single 

keyword is related to the file), the user applies a one-way 

function on it.  Recall  that  a  one-way  function  is such that 

it is easy to compute it on every input but hard to invert given 

the image. This enables keyword privacy: an adversary cannot 

know the keyword even if it has recovered the corresponding 

trapdoor. The user then performs (n, t)-secret sharing on the 

trapdoor and obtains a set of trapdoor shares. Finally, both file 

and trapdoor shares are uploaded to respective CSP for 

storage. To retrieve the files containing a certain keyword, 

the user generates the trapdoor of the keyword, employs 

another (n, t)- secret sharing on the trapdoor and sends the new 

set of trapdoor shares to CSPs. Note that for an identical 

keyword, its trapdoor  

shared in the storage and retrieval phases should be the 

same. This ensures that the CSPs are able to run multi-party 

protocols to perform ―decision search‖ file by file through 

checking whether the shares received in the retrieval phase 

and those received in the storage phase are from the same 

secret. If so, they send the corresponding file shares back to 

the user, and the user is able to reconstruct and decrypt the 

results. 

We note that the second approach relaxes the reliability 

guarantee of the first approach (from tolerating (n 1) failures  

of CSPs to (n t)), and hence enjoys the space bonus: it only 

needs one tth of the storage cost in the first approach. 

However, the second approach also has its own drawback as it 

is very time consuming. In particular, since each CSP does not 

have enough information on its own to decide whether the 

trapdoor shares computed and uploaded in storage phase and 

the fresh shares sent in user’s query are from an identical 

secret, at least one interaction is needed among all the other 

CSPs to recover and compare secret. In addition, since the 

search works in the way of per-file decision, the total number 

of interactions taken for a single keyword query is linear to 

the number of files stored at all the CSPs. 

To address the efficiency bottleneck in the second approach, 

we propose the STRE mechanism. STRE works in a similar 

way of the (second) straightforward approach, but builds index 

and shares the ―entrance‖ of inverted file list for accelerating 

search. STRE achieves constant time of interactions for a 

single keyword search. We will describe STRE in the next 

subsection. 

C. STRE Protocols 

We first present an overview of our proposed STRE, and 

then elaborate its detailed construction including security tech- 

niques for achieving our goals. 

STRE builds with inverted index. In particular, to enable 

efficient keyword search, we initially scan the file collection 

and map each possible keyword to a (linked) list of files, 

ensuring that any file in the list contains the corresponding 
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keyword. Given a keyword, it is efficient to search the related 

files by mapping the keyword and traversing the 

corresponding inverted file list. Moreover, since the inverted 

list is linked, we can consider the first node as the entrance of 

the list and use   it to traverse the whole list. STRE stores this 

type of inverted index in each CSP. 

To search the file that contains querying keywords, STRE 

builds upon the idea of sharing similar to the second naive 

approach. However, instead of sharing the keyword itself, 

STRE shares the first node (to be consistent, we also call it as 

trapdoor) mapped by the keyword. The advantage is that if the 

CSPs reconstruct the trapdoor, they can individually traverse 

the inverted file list and return search results. 

To achieve our security goals, we need to overcome the 

following three challenges: (i) how to prevent CSPs from 

knowing the file content? (ii) how to encrypt the inverted 

index so that the CSP can efficiently search but learn nothing? 

(iii) how to design a protocol for multi-party secret 

reconstruction to ensure robustness? In what follows, we 

describe the de- tailed construction of STRE, as well as how 

we tackle these challenges. 

 

Figure2  A Toy Example for Encrypted File Encoding and Reconstruction 

1)    Setup Phase: The setup phase  initializes  the  underly- 

ing cryptographic primitives, including two symmetric-

key encryption schemes: SKE1 = (Gen, Enc, Dec) and 

SKE2 = (Gen, Enc, Dec), three pseudorandom 

functions P( , ), Q( , ) and R( , ). The phase also 

assigns a master secret key (sk1, sk2, sk3, sk4) to the 

user. 

We assume the existence of some form of public-key 

infras- tructure where CSPs have registered their public 

keys, and all the entities can look up these public keys. In 

this way,  i) a  CSP can authenticate the identities of the 

other CSPs during collaborative search; ii) the user can 

authenticate the CSPs so that he/she can be sure that the 

retrieval protocol is run with the same CSPs that he/she 

previously ran the storage protocol with. 

2)    Storage Protocol: The storage protocol is for users to 

encrypt and distribute their files to multiple CSPs. Before 

uploading the files to the CSPs, the user encrypts the 

collection of files with  sk3  using  SKE1  and  encodes  

the  ciphertext of them with erasure coding. Note that 

since the files have been encrypted, we can just use 

Rabin’s information dispersal algorithm (IDA) [17] in 

STRE, which does not provide any confidentiality 

guarantee. 

         Each encrypted file is divided into t equal-size native 

chunks to be stored at t CSPs. Moreover, the native 

chunks can be encoded by linear combinations to form 

another (n t) code chunks to be stored at the other (n  t) 

CSPs. This enables us   to reconstruct the encrypted file 

from any t out of n chunks  so as to enhance the 

reliability of the outsourced files. 

Fig. 2 shows a toy example demonstrating how to achieve 

reliability for n = 4 and t = 2.  The  encrypted  file  is  split into 

two native 256-bit chunks (i.e., A and B), which are then 

encoded into another two code chunks with linear 

combination. Fig. 2 uses the trivial linear combination as C = 

A + B and     D  =  A      B  and  abuses  ―+‖  and  ―   ‖  as  the  

operations in 

Galois field GF(2
8
)1. All the chunks are sent to the CSPs 

for 

storage. Suppose two CSPs fail and lose B and D. Since B 

is the linear combination of A and C, the user can easily revert 

and compute B from A and C. The encrypted file is finally 

reconstructed. 

To preserve the privacy of the inverted index (see the 

beginning of this section), we follow the approach of [7], [8]. 

In particular, we build the encrypted index in the following 

way. As shown in Fig. 3, for each file containing a keyword w, 

we assign it with a node, and the node is afterwards encrypted  

 

Figure 3  Encrypted Index 

with SKE2 and stored in an array A. Each (plain) node 

contains three types of fields: i) file identifier field records the 

unique the identifier of the file containing w; ii) key field 

stores the symmetric key used for the encryption of the next 

node (the first node is encrypted with a random key Kw which 

will be elaborated later); iii) address field stores the address of 

the encrypted version of next node in array A
2
. In this way, if 

we can decrypt and obtain the first node of the inverted list in 

A, all the identifiers of the files containing w can be obtained 

in  a recursive way. 

Besides the array,  a look-up table T is included to record  

the locations and encryption keys  of  the  first  node  for  all 

the inverted lists. Roughly, for the keyword w, we store the 

location (in A) and encryption key Kw of the first node of its 

inverted list in T[Q(sk2, w)]. We also blind the content (i.e., 
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the location and encryption key of the first node) of T[Q(sk2, 

w)] with P(sk1, w). We note that the above operations are to 

make the table T look as random as possible from the 

adversary without user’s secret keys. 

Finally, the user uploads the encrypted file chunks as well  

as the index to each CSP. We note that the index is replicated  

in each CSP for n 1  fault  tolerance.  On  the  other  hand, 

even the CSPs accesses the index, they cannot get any useful 

information as the index has been protected using 

sophisticated encryption approaches. 

3)    Retrieval Protocol: In order to achieve privacy preserving 

keyword search over multiple clouds, we propose a novel 

retrieval protocol that consists of two stages: i) query 

sharing stage; ii) and reconstruction stage. The query 

sharing stage generates a (t, n)-secret sharing on the user’s 

keyword query and distribute the shares to n CSPs. The 

reconstruction stage allows the user to obtain the query 

results when at least t       (t n) CSPs are functioning. 

In traditional single CSP storage [7], to retrieve the files 

including a certain keyword w, the user has to submit the 

trapdoor as P(sk1, w) and Q(sk2, w). Recall the encrypted index 

construction, the CSP can use  Q(sk2, w)  to  identify the 

location of Kw  and  Addrw  about  the  inverted  list  of w, 

followed by removing the blinding with P(sk1, w). After 

obtaining the entrance information Kw and Addrw, the CSP can 

recursively identify and decrypt each node in the inverted list. 

The key idea in STRE is sharing the trapdoor. In particu- 

lar, instead of sending a whole trapdoor, we perform secret 

sharing on the trapdoor,  and  distribute  each  trapdoor  share 

to the respective CSP for search. One benefit of the sharing- 

based approach is trapdoor security. Specifically, the 

adversary compromising some CSPs can only see a limited 

number of (random) shares, and not learn the whole trapdoor, 

or the information that two set of (trapdoor) shares are  from  

the same trapdoor. Hence, the search  pattern  is  hidden  

before the collaborative search. On the other hand, STRE 

enjoys the advantage over the second naive approach (see 

Section IV-B) as it uses an inverted index and shares the 

entrance information of the inverted list, avoiding the linear-

growth reconstruction and comparison. 

To make secret sharing on (P(sk1, w), Q(sk2, w)), we lever- 

age the idea of multiple secret sharing. Specifically, we 

build a secret matrix consisting of P(sk1, w) and Q(sk2, w), and 

some random values which are used for checking the 

correctness of reconstruction. In addition, another ―mirror 

matrix‖ defined the same as the secret matrix except replacing 

P(sk1, w) and Q(sk2, w) with zero, is published. Later on, when 

the secret matrix is reconstructed, the mirror matrix can be 

used for partially cheating detection. STRE finally shares the 

secret matrix with multiple secret sharing scheme [14] and 

distributes the share vector as trapdoor share for each CSP. 

In the reconstruction stage, our approach uses the secure 

data aggregation scheme [18]. This is based on the observation 

that each CSP obtains a trapdoor share (in the form of a 

vector) from the user, and it is desirable to collect a threshold 

number of trapdoor shares together and further reconstruct 

the secret P(sk1, w) and Q(sk2, w). For security concern, it 

poses two requirements: i) each CSP should protect its 

trapdoor share, before obtaining the trapdoor share from other 

CSPs; ii) each available CSP should finally reconstruct the 

secret. 

To address the above two concerns, STRE follows a two- 

stage distribution. In particular, upon receiving the trapdoor 

share from the user, each CSP creates a zero matrix Bi, and 

writes the trapdoor share into the corresponding column of the 

matrix.  

 
We note that the sum matrix the collection of all the 

trapdoor shares, which has sufficient information for 

reconstructing P(sk1, w) and Q(sk2, w). In the first distribution 

of STRE, each CSP makes (n, n)-secret sharing on Bi and is 

tribute the n shares to the corresponding CSP. In this way, 

each CSP is able to obtain n ―sub-shares‖ respectively from 

B1, B2, . . . , Bn, and aggregates these sub shares into one share. 

We  note that the aggregated share is  also a share of B due to 

the additive  homomorphism  of  secret sharing. Hence, in the 

second distribution of  STRE, each CSP distributes its locally 

aggregated share to any other CSP, afterwards sums up all the 

aggregated shares from the other CSPs and itself, and obtains 

the collection of trapdoor shares B. We claim that the two-

stage distribution can meet our requirements, as it does not 

need any CSP to expose its trapdoor share beforehand, and all 

the CSPs collaborate to concurrently reconstruct B. 

After obtaining B, each CSP recovers the secret matrix with 

the multiple secret sharing scheme [14]. It also checks the 

correctness of reconstruction by comparing the reconstructed 

secret matrix with the mirror matrix. If the correctness check 

is passed, the CSP picks out P(sk1, w) and Q(sk2, w), uses them 

to search the files containing the underlying keyword w [7], 

[8] and returns back the corresponding encrypted file 

chunks. The user, after collecting all the related file chunks 

from several CSPs, groups these chunks according  to the 

unique file identifier, recovers the whole encrypted file with 

erasure coding, and finally decrypts them, obtaining the search 

results. In summary, STRE can tolerate the failure of (n t) 

CSPs with  an  expense  of additional (n t)/t times storage 

space in total. The reason is the  erasure  coding,  which  leads  

to n/t storage blowup. It is also worth noting that although 

our current discussion is focused on CSPs that store the same 

amount of file chunks, our mechanism can be easily extended 

to a more flexible storage strategy. For example, we can encode 

the encrypted file into more than n chunks and store more than 

one chunk in the cheaper or more reliable CSP. 

V. SECURITY ANALYSIS 

We now analyze the security of STRE mechanism in the 

assumed honest-but-curious environment. Our analysis is in 

terms of reliability, semantic security, trapdoor security and 

robustness, which were defined in Section III-B. 
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A.  Reliability 

Recall from Section IV-C2 that the encrypted file (say cf )  

is encoded by (n, t)-erasure coding. Specifically, cf is divided 

into t native chunks, using which another n  t code chunks   are 

constructed through linear combination. This operation can be 

viewed as  (c1, c2, . . . , cn) = E · cf 

where c1, . . . , ct are the native chunks, ct, . . . , cn are the code 

chunks and cf is used (with a slight abuse of notation) to 

express the encrypted file in chunk form. E is a (n  t)  

encoding matrix which consists of a (t t) unit matrix in its 

upper part. The rank of E is t, that is, any t row vectors of E 

are linear independent. 

During reconstruction, after obtaining any t chunks, denoted 

ci1 , . . . , cit , the reconstruction is realized by selecting the 

corresponding rows of E and constructing the decoding matrix 

E. Note that E is invertible. Thus 

 
which ensures reliability of STRE. 

B. Semantic Security 

We begin by considering file confidentiality. First of all, 

each file in the collection is encrypted  using  a symmetric- 

key encryption scheme. Since the erasure code is used for 

encoding the encrypted file, and it is retrievable in the case at 

least t encoded chunks are obtained, which does not affect the 

file confidentiality. Hence, the security of files can be reduced 

to that of the used symmetric-key encryption scheme in file 

encryption. 

Secondly, though a copy of the encrypted index is stored at 

each CSP, it is just used for recording the relation of keywords 

and files, and useless for extracting information from plain 

files. Based on the above two points, we can claim that the 

index and the collection of encrypted file chunks never leak 

any partial information about the original files except the file 

lengths. 

The second important requirement to ensure semantic se- 

curity is to protect the dynamic process, during which an 

adversary can dynamically submit keyword queries and receive 

results to help launch attack. Precisely, semantic security 

requires that no partial information except access pattern and 

search pattern is leaked during keyword-based queries. Note 

that in file retrieval, the process of search is mainly executed 

with the reconstructed trapdoor (i.e., P(sk1, w) and Q(sk2, w) 

in STRE mechanism) and the encrypted index. Thus, in order 

to show STRE mechanism achieves this security requirement, 

following the simulation-based definition from Curtmola and 

colleagues [7], we need to build a simulator, which is able      

to learn the allowable leakage, and attempts to simulate the 

array A, look-up table T and (P(sk1, w), Q(sk2, w)) as random 

objects from adversary’s perspective. 

Before describing the simulator, we introduce a set of 

notations. Suppose the file  collection  f  has  been  queried  

for q times. Without loss of generality, we can denote the 

queried keywords w1, w2, . . . , wq. We use f (wi) to denote a 

lexicographically ordered vector consisting of the identifiers 

of files in f containing wi. Obliviously, the simulator must 

know the access pattern (see its definition in Section III-B)      

f (w1), . . . , f (wq). We build the simulations as follows. 

    Build A
∗
 to Simulate A. The simulator builds A

∗
 as 

follows. It assign random strings (with the same length) 

for each file identifier in the sets f (w1) through f (wq), 

    and  put  these  random  strings  in  random  positions of    

   ―encryptions‖ (random strings in fact) as A except that the 

result is stored in random positions rather than the real encryp- 

tions output by SKE2 stored in positions derived from R(sk3, ). 

Since either the secret key sk4 or the random keys used to 

encrypt the node in inverted list cannot be obtained by 

adversary with all but negligible probability, the adversary 

cannot distinguish the real random strings from the output by 

SKE2 or R(sk4, ), and hence A∗ is indistinguishable from A. 

    Build T
∗
 to Simulate T. Similar to the simulation above, 

the simulator has obtained the random string (say γi
∗ )  for 

the first node in each set f (w1), . . . , f (wq). The simulator 

just picks two random strings respectively for simulating 

P(sk1, wi) and Q(sk2, wi) 

 
for i = 1, . . . , q. In particular, the simulator stores the 

(simulated) result γi
∗  νi

∗  in the position ξi
∗  of T

∗
. In 

summary, T
∗
 consists of q encryptions generated by XOR-

ing a (simulated) message with a random string νi
∗  and stored 

in the position ξi
∗ . For the pseudo-randomness of P(sk1, ) and 

Q(sk2, ), the adversary cannot distin- guish ξi
∗  and νi

∗  from 

respective output. Hence T
∗
 is Build   (Pi

∗ , Q
∗
i )   to   

Simulate   (P(sk1, wi), Q(sk2, wi)). The reconstructed 

trapdoor can be easily simulated as (ξi
∗ , νi

∗ )  for  i = 1, 2, . . . 

, q.  The  pseudo-randomness  of P(sk1, ) and Q(sk2, ) 

guarantees the indistinguishabil- ity of (ξi
∗ , νi

∗ ) from 

(P(sk1, wi), Q(sk2, wi)). 

C. Trapdoor Security 

We now prove that the trapdoor security of STRE mecha- 

nism can be reduced to the security of multiple secret sharing 

scheme [14]. 

Suppose an adversery has a non-negligible advantage in 

winning the game elaborated in Section III-B. Our aim is to 

build a simulator S which is able to distinguish two different 

secrets with (t − 1) shares in multiple secret sharing scheme 

[14] by running A. We provide the simulation as follows. 

After executing and getting a collection of files f , runs the 

storage protocol on f to obtain the secret key (sk1, sk2, sk3, 

sk4), a collection of (encrypted) chunks and  the  (encrypted)  

index. is given the encrypted index. 

For ’s trapdoor query ( , w0, w1), where  < t, 

responds as follows. 
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-    Construct two same secret matrix S0, S1, and 

respectively write P(sk1, wi) and Q(sk2, wi) into Si for i = 

0, 1. 

-    Submit (C, S0, S1) to the challenger which returns the 

trapdoor shares vi of Sb on each i ∈ C, where b ∈R 

{0, 1} is kept secret from A and S. 

-    Return the set of trapdoor shares {vi}i∈C back to  A. 
Finally, outputs ’s submission b

′
 which is the 

guess of b. 

It is clear that the view of A when run as a sub-routine 

By  is identical to the view of the adversary in the game 

elaborated in Section III-B. Thus, we can claim that if the 

adversary succeeds in the game of Section III-B, there exists   

a simulator having the same probability on distinguishing two 

different secrets from multiple secret sharing scheme with less 

than t shares. 

D.  Robustness 

The CSP authenticates the identity of the other CSPs during 

the collaborative search. If the authentication fails that means 

the sub-shares distributed by CSPs have been either modified 

or substituted, and the protocol is aborted. Since the share 

matrix is imposed with (n, n)-secret sharing and any incorrect 

sub-share will lead to the failure of reconstruction, none of 

the CSPs can get the other CSPs’ shares properly. If the 

authentication succeeds, as elaborated in our protocol, each 

CSP will get correct distributions from all the other CSPs and 

successfully builds the share matrix for further search. 

VI. EXPERIMENTAL STUDY 

Our experiments were run using as client machine a Linux 

Mint 14 machine with Intel(R) Core(TM)2 Duo CPU 

clocked 
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Fig. 4. File Storage and Retrieval Performance (the leftmost column labeled B 

in each subfigure is the time cost of baseline approach, while the following  

columns are for STRE in different cases) 

at 2.40 GHz and 2 GB of memory. We simulate the multiple 

clouds environment by using several 32-bit Linux T1 Micro 

servers in Amazon EC2 platform. Note that, although this is 

not an actual multi-cloud storage environment, it is sufficient 

for the purpose of our experiment, since we virtualize a large 

number of connected and collaborative cloud computers into a 

logical multi-cloud environment. This experimental setting is 

also helpful for simulating storage crash through erasing the 

stored data at the servers in Amazon EC2 platform. 

We use a real world dataset, namely the Enron email 

dataset [9] as our corpus. We  extract a subset of emails  

(i.e., a total number of 12008 emails in the subdirectory 

beck-s) from Enron dataset. This dataset is suitable as it can 

simulate organizations storing emails to a remote server in 

encrypted form and wishing to search through them from 

time to time. Before testing, we pre-processed the dataset 

by generating keywords and permutation tables for R( , ), 

Q( , ). Specifically, we cleaned up the corpus through the 

Porter stemming algorithm [19], removed content-

independent words with a spelling corrector, and built 

inverted index for the most 1500 frequent keywords for 

generating keywords. The prefix method [20] was used to 

generate permutation tables serving as R( , ) and Q( , ). 

We adopt a classic symmetric searchable encryption scheme 

SSE-1 [7] as a baseline approach, which shares an identical in- 

dex with STRE mechanism but does not consider the 

reliability of the searchable encrypted data. 

A. Performance of File Storage 

In this set of experiments, we aim to evaluate the efficiency 

of our storage protocol by comparing the total time taken to 

upload the files using our protocol with that using the baseline 

approach. In Fig. 4(a), Fig. 4(b) and Fig. 4(c), we respectively 

fix the threshold t = 2, 3 and 4, and vary the number of CSPs 

from t + 1 to 10. 

It is not surprising to see that our STRE mechanism takes 

more time to complete the file storage than the baseline 

approach. Note that the index construction time is actually 

neg- ligible (nearly one second) in all the tests. Our file 

encryption time is slightly longer than that of the baseline 

approach and also increases with the number of CSPs. This is 

because we utilize the Plank’s fast Galois Field Arithmetic 

Library [21] to encode the encrypted files into multiple chunks 

to be sent to the multiple CSPs, while the baseline approach 

just needs to encrypt the files one by one. Our transmission 

time is relatively longer than the baseline approach, which is 

also due to the existence of the multiple CSPs. The user needs 

to send all the file chunks to n CSPs rather than just 

communicating with one CSP in the baseline approach. 

Regarding storage space, the index consisting of the array 

and look-up table takes up to 8736 KB. Besides this, in file 

encryption, SSE-1 [7] (i.e. our baseline approach), produces  

25 MB ciphertext, while each CSP in STRE mechanism just 

needs 1/t times of this space to store the encoded encrypted 

files whatever n is. This enables us to save nearly (t 1)/t 

proportion of space for each individual CSP. 

B. Performance of File Retrieval 

Without loss of generality, we randomly pick a query 

keyword and then evaluate the efficiency of retrieving all the 

files containing the query keyword. Note that in this 

evaluation, we assume the worst case, that is, all the n CSPs 

participate   in the collaborative search but only t of them 

return the query results. 

One query with the keyword America returns 961 files in 

our corpus. Fig. 4(d), Fig. 4(e) and Fig. 4(f) show the time 

taken to execute this query when varying the number of CSPs 

and threshold t. As expected, to provide reliability guarantee, 

our STRE mechanism needs more time to retrieve the files 

compared to the baseline approach. Specifically, the retrieval 

protocol in STRE mechanism consists of two processes and 

hence it requires two  rounds  of  interaction  with  the  CSPs 

as well as encrypted file reconstruction.  Though the search 

and file decryption are slower than the baseline approach, our 

retrieval protocol is more efficient in terms of 

transmission. The main reason is that the multi-cloud setting 

enables us to concurrently receive data with multiple threads 

at the user side. To sum up, our STRE mechanism achieves 

both security and reliability without introducing significant 

overhead compared to the baseline approach, since our 

execution time is still within seconds. 

VII. RELATED WORK 

Since our work is related to both privacy-preserving key- 

word search and reliability issues in the cloud, we give a brief 

review of these two threads of works. 

A. Privacy-Preserving Keyword Search 

The problem of searching on encrypted data can be solved  

in its most generic case using the work of Goldreich and 

Ostrovsky [22] [23] on oblivious RAMs. Unfortunately, this 

approach requires multiple interactions and has a high compu- 

tation overhead. Even though the recent work [24] has greatly 

improved the  efficiency of  oblivious RAMs,  it  is  based  on 

a stronger assumption over the architecture. That is, either 

hybrid cloud setting or a public cloud equipped with trusted 

computing base is required such that the ORAM nodes and 
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oblivious load balancer can be deployed in a fully trusted 

environment. Therefore, for higher efficiency, the security 

requirements must be weakened appropriately by allowing 

some limited information (i.e., the access pattern and search 

pattern) about the messages and the queries revealed to the 

adversary. 

Based on this intuition, searchable encryption was first 

introduced by Song et al. [4], in which a user stores his/her 

encrypted data in a semi-trusted server and later searches with 

a certain keyword. In their proposal [4], each word is inde- 

pendently encrypted under a specified two-layered encryption. 

Given a token (i.e., trapdoor) for a keyword, the server can 

strip the outer layer and assert whether the inner layer is of   

the correct form. Later, Goh [12] introduced bloom filter [25] 

to construct secure indexes for keyword search, which allows 

server to check if a file contains a certain keyword without 

scanning the entire file. Chang et al. [11] offered similar 

solutions to the problem of privacy-preserving keyword search 

through building pseudo-random bits to mask a dictionary- 

based keyword index for each file. A formal treatment to 

symmetric searchable encryption was presented by Curtmola 

et al. [7]. They provided improved security notions for 

symmetric searchable encryption and presented ―index‖ 

approach, in which an array and a look-up table are built for 

the entire      file collection. Each entry of the array is used to 

store an encryption of file identifier associated with a certain 

keyword, while the look-up table enables one to efficiently 

locate and decrypt the appropriate entry from array. 

Toward extending the functionalities of privacy preserving 

keyword search, Li et al. [26] considered the problem of fuzzy 

keyword search over encrypted data, and proposed a solution 

with the wildcard-based fuzzy set construction method. Cao et 

al. [27] solved the challenging problem of privacy-preserving 

multi-keyword ranked search, and proposed a scheme based 

on secure inner product computation. Sun et al. [28] then 

made improvements on the multi-keyword ranked search 

scheme [27], and presented an efficient scheme under a 

stronger threat model. 

Aiming at providing searchable encryption with efficient 

update, Liesdonk et al. [15] presented two schemes: the first 

one transforms each unique keyword to a searchable 

representation such that user can keep track of metadata items 

via appropriate trapdoor. The second one deploys a hash chain 

by applying repeatedly a hash function to an initial seed. Since 

only the user knows the seed, he/she can traverse the chain 

forward and back- ward, while the server is just able to 

traverse the chain forward only. Kamara et al. [8] provided the 

first symmetric searchable encryption construction satisfying 

sublinear search time, security against adaptive chosen 

keyword attacks, compact index and the ability to add and 

delete files efficiently. Their solution is based on Curtmola et 

al’s work [7], but adds another data structure namely deletion 

table and deletion array to record the metadata for the 

added/deleted files, which can be utilized to adaptively change 

the appropriate entries in search array and search table. The 

dynamic symmetric searchable encryption has been extended 

to paralleled setting [10]. Recently, Cash et al. [29] 

implemented a prototype supporting multiple keyword search 

and dynamic updates for large databases. Naveed et    al. [30] 

proposed a dynamic searchable encryption scheme via blind 

storage for further hiding filename and length. Stefanov et al. 

[31] and Hahn et al. [32] improved dynamic searchable 

encryption on security and efficiency respectively. 

Some security concerns about existing searchable 

encryption schemes have been raised. Islam et al. [33] 

introduced a novel attack that exploits data access pattern 

leakage to disclose significant amount of sensitive information 

using a modicum of priori knowledge. Liu et al. [16] showed 

that the search pattern leakage can result in non-trivial risks. 

They proposed two concrete attacks exploiting user’s search 

pattern and some auxiliary background knowledge to disclose 

the underlying keyword in user’s query. 

For the aim of complete security, although oblivious RAM- 

based protocol [22], [23] can be used for completely hiding 

access pattern and search pattern, as we stated before they    

are computationally intensive and do not scale well for real 

world datasets. The recent proposals in [33], [16]  for  the  

same purpose are based on adding dummy keywords/files to 

obfuscate query/result, causing communication overhead and 

effective in just limited cases. As with existing work, our 

mechanism cannot keep the privacy of access pattern, but it is 

able to protect search pattern before collaborative search. 

In summary, we note that existing works enable efficient, 

flexible and dynamic privacy-preserving keyword search, but 

fail to consider reliability of outsourced data. Specifically, 

existing works on searchable encryption rely on a single 

server/CSP, which could still be vulnerable to a single-point of 

failure [34] even though cloud storage provides an on-demand 

remote backup solution. 

B. Reliable Cloud Storage 

Ensuring data availability in distributed storage system is 

critical, since node failures are prevalent. The classical 

approach is via erasure codes, which encodes original data 

and stripes encoded data across multiple nodes.  Erasure  

codes  can tolerate multiple failures and allow the original data 

to remain accessible by decoding the encoded data stored in  

other surviving nodes. Recent studies (e.g., [35], [36] to list     

a few) proposed regenerating codes for distributed storage. 

Regenerating codes built on the concept of network coding 

aim at intelligently mixing data blocks that are stored in 

existing storage nodes, and then generating data at a new  

storage  node. It is shown that regenerating codes reduce the 

data repair/recovery traffic over traditional erasure codes 

subject to the same fault tolerance level. 

Unlike existing work on reliable storage, which builds with 

a proxy based architecture and makes the proxy server as an 

interface for storage repair between client applications and 

clouds, reliability in this paper is considered as result 

recovery. That is, after extracting at least some partial results 

from CSPs, the user locally recovers the clear files containing 

the searched keyword. 
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VIII. CONCLUSION 

In this paper, we propose the STRE mechanism, to promote 

reliability of outsourced searchable encrypted data. In STRE, 

user’s searchable encrypted data is strategically distributed to 

and stored at multiple CSPs, so as to achieve high crash tol- 

erance. Besides reliability, the STRE mechanism also affords 

efficient and flexible storage properties and partially hidden 

search pattern. Extensive experiments demonstrate the effi- 

ciency of our scheme. As indicated in the experiment results, 

the largest overhead of our proposed mechanism compared 

with the classical approaches is communication time. This is 

because increasing the number of CSPs implies adding data 

redundancy. Thus, to reduce data redundancy and save storage 

and bandwidth, we will explore the regenerating code 

methods, which have been recently utilized to minimize the 

bandwidth for file retrieval while tolerating failures. 
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