
 International Journal on Applications in Information and Communication Engineering

Volume 4: Issue 2: April 2018, pp 12 - 25. www.aetsjournal.com ISSN (Online) : 2394 - 6237

--- ---

12

Abstract— We consider the scenario of broadcasting for real-
time applications, such as multi-player games and video streaming,
and loss recovery via instantly decodable network coding. The
source has a single time slot or multiple time slots to broadcast
(potentially coded) recovery packet(s), and the application does not
need to recover all losses. Our goal is to find packet(s) that are
instantly decodable and maximize the number of lost packets that
the users can recover. First, we show that this problem is
equivalent to the unique coverage problem in the general case, and
therefore, it is hard to approximate. Then, we consider the practical
probabilistic scenario, where users have i.i.d. loss probability and
the number of packets is either constant (video streaming), linear
(multi-player games), or polynomial in the number of users, and we
provide two polynomial-time (in the number of users) algorithms.
For the single-slot case, we propose Max Clique, an algorithm that
provably finds the optimal coded packet w.h.p. For the case where
there is a small constant number of slots, we propose Multi-Slot Max
Clique, an algorithm that provably finds a near-optimal solution
w.h.p. when the number of packets is sufficiently large. The
proposed algorithms are evaluated using both simulation and real
network traces from an Android multi-player game. And they are
shown to perform near optimally and to significantly outperform the
state-of-the-art baselines.

Keywords— Broadcast, loss recovery, instantly decodable
network codes, real-time applications, network coding.

I. INTRODUCTION

roadcasting data to multiple users is widely used in many

wireless applications, ranging from satellite

communications to WiFi networks. Wireless transmissions,

however, are subject to packet losses due to channel

impairments, such as, wireless fading and interference.

Effectively recovering these losses could provide tremendous

performance improvement to many applications, especially

R.Sudharashana , Final Year Cse, Meenakshi Ramaswamy

Engineering College, Thathanur, Tamilnadu, India.

K.Subasri , Final Year Cse, Meenakshi Ramaswamy Engineering

College, Thathanur, Tamilnadu, India.

S.Pavunpappa , Final Year Cse, Meenakshi Ramaswamy

Engineering College, Thathanur, Tamilnadu, India.

S.Sungaya , Final Year Cse, Meenakshi Ramaswamy Engineering

College, Thathanur, Tamilnadu, India.

 Arivusudar.K , Final Year Cse, Meenakshi Ramaswamy

Engineering College, Thathanur, Tamilnadu, India.

M. Makuru , Head Of The Department Of Computer Science And

Engineering , Meenakshi Ramaswamy Engineering College,

Thathanur, Tamilnadu, India.

real-time applications, such as, fast-pace local multi-player

games and live video streaming.

We have experienced this problem firsthand. In our previous

work, we built MicroPlay [1], one of the first networking

frameworks for multiplayer games that exploit WiFi broadcast

to achieve accurate game rendering and low latency. The

rendering of a player is quicker and more accurate because it

is done by leveraging directly the command packets generated

by the player (that are then broadcast to the other players).

When deploying the system, we experienced broadcast losses,

and our measurements showed that if we could recover even

a small percentage of packet losses (less than 1%) in a

timely manner, then our game rendering engine would benfit

tremendously, i.e., animation jitters could be completely

eliminated.

As another example, CrowdWiFi by Streambolico [2] is one

of the first commercial systems that exploit WiFi broadcast to

stream live videos to a large number of users, such as, crowds

at stadiums, concerts, and conferences. CrowdWiFi is able to

achieve 11x bandwidth improvement over traditional unicast

solutions [3]. The loss recovery algorithm used by CrowdWiFi

is the key contributor to its superior performance: it has helped

the system to keep the number of packets that miss their

playback deadline low even when the loss rate is high. (The

number of packets that miss deadline is kept negligible even

when the wireless loss rate is up to 10% [3].)

Motivated by the importance of loss recovery in wireless

broadcast for real-time applications, in this work, we aim to

find the best coding scheme to recover packet losses.

Real-time applications have two distinct characteristics:

(i) they have strict and urgent deadlines, i.e., a packet is

outdated after a short amount of time, and (ii) they can

tolerate some losses. For example, a game client can tolerate

packet losses by partially moving (rendering) the players using

only the received packets, then later on, it corrects the

players’ positions by syncing its state periodically [1].

Therefore, it is highly desirable to recover packet losses with

very low delay and within a very narrow coding window.

Consequently, we focus on coding schemes for loss recovery

that allows for instantaneous decoding, i.e., with zero delay.

These schemes are also known as Instantly Decodable

Network Codes (IDNC) [4]–[10].

In contrast to previous IDNC literature, our work does not

focus on how to recover all packet losses with a minimal num-

ber of transmissions. This is because for real-time applications,

there may not be enough time for all receivers to recover all

the losses. Instead, we address the practical case where the

 R.SUDHARASHANA , K.SUBASRI , S.PAVUNPAPPA , S.SUNGAYA,

ARIVUSUDAR.K , M. MAKURU

 ,

 RECOVERY OF PACKET LOSSES FOR

REAL TIME APPLICATIONS

B

 International Journal on Applications in Information and Communication Engineering

Volume 4: Issue 2: April 2018, pp 12 - 25. www.aetsjournal.com ISSN (Online) : 2394 - 6237

--- ---

13

source, due to real-time constraints, has a limited number of

opportunities to send recovery packets, i.e., one time slot or

a small number of time slots. To this end, we first investigate

the scenario where the source has a single slot to transmit a

recovery packet. We then use the result of our analysis for the

single-slot scenario to analyze and design a recovery algorithm

for the multi-slot scenario.

We formulate the single-slot problem, which we refer to as

the Real-Time IDNC problem, as follows:

Consider a source that broadcasts a set of packets, , to

 a set of n users, . Each user, u , wants all packets in and

already knows a subset of them, u , e.g., through previous

transmissions. The goal is to choose one (potentially coded)

packet to broadcast from the source, so as to maximize the

number of users who can immediately recover one lost packet.

(This is equivalent to maximizing the number of lost packets

that the users can recover.)

We first show that Real-Time IDNC is equivalent to the

Maximum Clique problem in an IDNC graph (to be precisely

defined in Section III) as well as the Unique Coverage problem

(introduced by Demaine et al. [11]). Therefore, these problems

are all hard to approximate [11].

Then, we present the main contribution of this work: the

analysis of random instances of the problem, where the

probability that a user receives a packet is i.i.d. Bernoulli. This

problem, referred to as Random Real-Time IDNC, corresponds

to a Maximum Clique problem on an appropriately created

random IDNC graph. Surprisingly, we show that when the

number of packets is polynomial in the number of users, the

Maximum Clique problem can be solved with high probability

on this particular family of random graphs, by a polynomial-

time (in the number of users) algorithm that we propose, called

Max Clique. Based on the results of the single-slot scenario,

we then extend the analysis to the scenario where there is a

small constant number of slots, and we propose Multi-Slot Max

Clique, a recovery algorithm that provably finds near-optimal

solution w.h.p. when the number of packets is sufficiently large

(to be precisely defined in Section VI-B).

We implement and compare the proposed coding schemes,

Max Clique and Multi-Slot Max Clique, against several

baselines: the best repetition scheme, a COPE-like greedy

scheme [12], the recovery scheme used by CrowdWiFi [3],

the Ω(1/ log n)-approximation algorithm proposed by

Demaine et al. [11], and the optimal solution (via brute

force). Simulation results show that our proposed schemes

perform close to the optimal solution and significantly

outperform the state-of-the-art ones for the loss rate varying

from 1% to 99%. For example, for the 15-user 15-packet 2-

slot case, Multi-Slot Max Clique improves by a factor of

1.3 on average over both COPE-like and best repetition code,

and it performs up to 1.6 times better than the COPE- like

code and up to 2.7 times better than the best repetition code.

Finally, we evaluate Max Clique on network traces collected

from a real-time multi-player game on Android. The results

of this trace-based evaluation confirm the superior

performance of Max Clique over the baselines.

The rest of this paper is organized as follows. Section II

discusses related work. Section III formulates the Real-Time

IDNC problem. Section IV describes the Maximum Clique

and the Unique Coverage problems and shows that these two

problems are equivalent to Real-Time IDNC. Section V ana-

lyzes the probabilistic version (Random Real-Time IDNC) and

describes Max Clique, the polynomial-time algorithm to find

a maximum clique w.h.p. Section VI analyzes the multi-slot

scenario and describes the Multi-Slot Max Clique algorithm.

We also discuss the support of packets with different priorities

here. Section VII evaluates and compares our coding schemes

with existing schemes. Section VIII concludes the paper.

II. RELATED WORK

Real-Time Applications That Use Wireless Broadcast: In

our previous work, we designed and implemented MicroPlay,

a networking framework for local multi-player games [1].

Games built on top of MicroPlay would have accurate ren-

dering without the need of complex movement prediction and

very low game latency. To achieve these desired properties,

MicroPlay explicitly exploits the broadcast nature of WiFi:

command packets are broadcast by the Access Point and

pseudo-broadcast (unicast + overhearing) by the clients; these

command packets are then used directly to render movement.

In our experiments with MicroPlay, we have found that

although broadcasting in our setting has a small loss rate (less

than 1%), it demands frequent re-syncing of game state that

incurs uncomfortable animation glitches. This motivates us to

investigate the best way to recover loss of wireless broadcast

in this work.

Recently, Ferreira et al. present a live video streaming

system that exploits WiFi broadcast and uses IDNC loss

recovery packets [3]. By combining broadcast and coded

recovery, the authors show that their system could achieve up

to 11x bandwidth improvement compared to traditional

unicast streaming solutions. More importantly, the authors

have shown that their recovery coding scheme has helped

the system to keep the number of packets that miss their

playback deadline low (negligible) even when the wireless loss

rate is high (up to 10%). The system is currently offered by

Streambolico as a commercial product called CrowdWiFi [2].

CrowdWiFi allows a WiFi base station to stream live video

at high speed to a large number of users, e.g., crowds at

stadiums, concerts, and conferences. CrowdWiFi demonstrates

that utilizing wireless broadcast is of high interest in practice.

In Section VII, we compare our coding scheme to the heuristic

coding scheme used in this system and show that we bring

significant improvement.

Instantly Decodable Network Coding: Katti et al. [14]

proposed COPE, an opportunistic inter-session network coding

scheme for wireless networks. Encoded packets are chosen in

a heuristic way that aims to maximize the number of receivers

that can decode them in the next time slot. Keller et al. [12]

investigated algorithms that minimize decoding delay, includ-

ing two algorithms that allow for instantaneous decoding: a

COPE-like greedy algorithm and a simple repetition algorithm.

 International Journal on Applications in Information and Communication Engineering

Volume 4: Issue 2: April 2018, pp 12 - 25. www.aetsjournal.com ISSN (Online) : 2394 - 6237

--- ---

14

{ ·· · }

In Section VII, we describe these two algorithms in more detail

and use them as baselines for comparison.

In a follow-up work [13], Sadeghi et al. improved the oppor-

tunistic algorithm previously proposed by Keller et al. [12]

by giving high priority to packets that are needed by a large

number of users. The authors also gave an Integer Linear

Program formulation to the problem of finding a packet that

can be immediately decoded (i.e., instantly decodable) by the

largest number of users. They showed that this problem is NP-

Hard based on the Set Packing problem. We note that their

formulation differs from ours since it requires that a coded

packet must be instantly decodable by all users who still need

at least one packet. This restricts the solution to the one that

satisfies all of these users. Thus, this may lead to a suboptimal

solution because there may be a coded packet that is only

instantly decodable by some but not all users but is beneficial

to a larger number of users. Our formulation ensures that we

find this optimal packet.

Sorour et al. have an extensive line of work investigating

instantly decodable codes [4]–[10], focusing on minimizing

the completion delay. They introduced the term Instantly

Decodable Network Coding (IDNC) that we adopt in this

work. In one of the earlier work [4], they proposed a con-

struction of IDNC graphs based on feedback from the users

and then introduced a transmission scheme based on graph

partitioning. We consider the same construction of IDNC

graphs as them [4]. Based on a stochastic shortest path

formulation, they proposed a heuristic algorithm to minimize

the completion delay [5]. In a latter work [6], they introduced

the notion of generalized IDNC problem, which does not

require the transmitted code to be decodable by all users, as

opposed to the strict version studied previously [4], [5], [12].

Real-Time IDNC considers the generalized version. Further-

more, in a follow-up work [6], they related finding an optimal

IDNC code to the Maximum Clique problem in IDNC graphs

and suggested that it is NP-Hard; however, no explicit reduc-

tion was provided. In later work [7], [8], they extended the

previous work [5] to cope with limited or lossy feedback.

Recently, they considered the case of multicast instead of

broadcast [9], and the case where users could buffer coded

packets in addition to plain packets [10].

Li et al. [15] adopted IDNC for video streaming and

showed that, for independent channels and sufficiently large

video file, their proposed IDNC schemes are asymptotically

throughput-optimal subject to hard deadline constraints when

there are no more than three users. In contrast, we consider

an arbitrary number of users, and we provide an optimal

single transmission for the single-slot case and constant

number of near-optimal transmissions for the multi-slot

case. CrowdWiFi also uses a heuristic IDNC recovery

scheme [3], which we describe in detail and compare against

in Section VII-A.

Index Coding: Our problem setup is relatively similar to

that of the Index Coding (IC) problem, introduced by Birk

and Kol [16] previously and extensively studied since. An IC

problem also considers a source that knows a set of packets, ,

and a set of users. Each user (x,) demands one particular

packet, x , and has side information consisting of a subset of

packets. The source broadcasts to all users without errors. The

goal is to find an encoding scheme that minimizes the number

of transmissions required to deliver the packets to all users.

It has been shown that except for the cases that can be

solved with one or two transmissions, other instances of the IC

problem are NP-Hard to solve [17]–[19], including a variation

of IC where users are pliable and happy to receive any one

packet [20], [21]. Furthermore, even finding an approximation

to the problem has been shown to be hard [22], previous

work [23], [24] provided heuristic algorithms to find such

codes.

Despite the similarities, there are two main differences

between our problem and IC. First, in our problem, each user

wants all the packets, not just a single packet. Second, we

want to find an instantly decodable packet that maximizes the

number of beneficiary users, not the total number of

transmissions to satisfy all users.

Data Exchange: The Data Exchange (DX) problem,

originally introduced by El Rouayheb et al. [25], also has

a similar setup to our problem. There is a set of packets, ,

and a set of users. Each user, u , knows a subset of packets,

u , and wants all packets in . In DX, all users can

broadcast messages. The objective is to find an encoding

scheme that minimizes the number of transmissions required

to deliver all packets in to all users.

To solve the DX problem, a randomized polynomial-time

solution was proposed [26], and deterministic polynominal

time solutions were also proposed [27], [28]. There is existing

work that studied the problem in general network topologies

[29]. Variants of the problem where there are helpers and

transmission weights were also studied [30], [31]. Various

necessary and sufficient conditions that characterize feasible

transmission schemes for the problem were also proposed

under a different name of universal recovery [32]–[34].

Similar to DX, in our setting, all users want all the packets

in . However, there are two main differences: (i) in our

setting, only the source can broadcast as opposed to having all

users capable of broadcasting, and (ii) we are nterested in

instantaneous decoding to maximize the number of beneficiary

users with one transmission, as opposed to minimizing the

total number of transmissions.

Figure 1. Example 1: A source broadcast 6 packets p1, , p6 to 3 users.

Due to packet loss, user 1 only received p1 and p2; user 2 received p3 and p5;
user 3 received p3 and p6.

 International Journal on Applications in Information and Communication Engineering

Volume 4: Issue 2: April 2018, pp 12 - 25. www.aetsjournal.com ISSN (Online) : 2394 - 6237

--- ---

15

.

⊕

⊕

N

⊕ ⊕

|N |

Unique Coverage: This problem was originally introduced

by Demaine et al. [11] and is as follows. Given a universe U =

e1, , en of elements and a collection S = S1, , Sm of subsets of

U. Find a subcollection S
×,
, S to maximize the number of

elements that are uniquely covered, i.e., appear in exactly one

set of S
×
.

The Unique Coverage problem was shown to be hard to

approximate within a factor of Ω(1/ log
σ
 n), for some constant σ

depending on s, assuming that NP ¢ BPTIME(2ng
) for some s

> 0 [11] . In this work, we show that Real-Time IDNC is

equivalent to Unique Coverage, thus it is also hard

toapproximate. The detailed mapping between the two

problems is provided in Section IV.

This Work in Perspective: A preliminary version of this

work has appeared before [35]. In this paper, we extend the

previous work in the following ways. First, by showing that

Real-Time IDNC is equivalent to Unique Coverage, we show

that Real-Time IDNC is not only NP-Hard [35] but also hard

to approximate. Second, we extend our analysis of the single-

slot scenario to the multi-slot scenario, and we propose Multi-

Slot Max Clique, a recovery algorithm that provably finds

near-optimal solutions. Finally, we collect network traces of a

real-time application that utilizes broadcast and present a new

evaluation based on the traces.

III. PROBLEM FORMULATION

Let

denote the set of n users, and P = { P1 Pm } be the set

of m packets. We assume that the original m packets

were broadcast by a source. Due to packet loss, each

of n users missed some of the m packets. (In general, a

user may not have missed any packet, in which case,

we do not consider him/her as part of the problem

formulation.) We denote the set of packets that were

successfully received by user i by Hi . Furthermore, let

Wi be the set of packets that user i wants, i.e.,

Consistently with existing literature [4], [17], we call Hi and

Wi the ―Has‖ and ―Want‖ sets of user i, respectively.

After the initial broadcast, the source tries to recover

the losses,

by sending coded packets and exploiting the side

information of the already delivered packets,

Let the n m matrix A be the identification matrix for the

side information of the users, i.e.,entry aij = 1 if user ui
wants packet pj and 0 otherwise. A is also called a

feedback matrix [4]–[9]. Let us clarify this by an example.

Example 1: Consider a scenario with 3 users and 6 packets.

Furthermore, assume that after the initial broadcast, user u1

successfully received packets p1 and p2; user u2 received p3

and p5; and user u3 received p3 and p6. The scenario is depicted

in Fig. 1. In this case, the side information matrix

is as follows:

To deliver the packets in the of the users, we focus on

instantly decodable, lightweight coding schemes that operate

over GF(2). For a set of packet M , s the corresponding coded

packet, c, is their binary sum, denoted by

Definition 2: A coded packet, c

N
 , is instantly decodable

with respect to a set of users, N , if and only if

(i) Every user, ui , can decode c
N
 immediately upon

reception to recover a packet p
i
 i. That is, each user in

Benefits from c
N
 by recovering one of the packets from its

want set.

(ii) Every packet in the binary sum of c
N
 is wanted by at

least one user in .

For example, for the scenario of Example 1, the coded

packet c
{u1,u2,u3} p1 p3 is instantly decodable with

respect to u1, u2, u3 since u1 can recover p3, while u2 and

u3 can get p1. Meanwhile, c
{u2,u3} = p5 p6 is not instantly

decodable with respect to u1.

Note that without the second condition of the definition, the

packet is still instantly decodable. This condition is included

to facilitate the analysis: with this condition, every component

(plain packet) of a solution (coded packet) contributes to

the value of the solution. For instance, we do not consider

c
{u2,u3} = p3 p5 p6 instantly decodable with respect to

u2, u3 since although c
{u2,u3} can be decoded by u2 and u3,

packet p3, which is a component of c
{u2,u3}, is not wanted by

either u2 or u3. In other words, p3 does not add value to the

solution as u2 and u3 already knew it. From here on, we will

omit the superscript of c
N
 when there is no

ambiguity. We would like the coded packet to be immediately

beneficial to as many users as possible. Thus, our notion of

optimality is w.r.t. the cardinality of the set of beneficiary

users .

The Real-Time IDNC Problem: Given a side information

matrix A, find a (possibly coded) packet which can be

instantly decoded by the largest number of users. We refer

to this packet an optimal recovery packet.

 International Journal on Applications in Information and Communication Engineering

Volume 4: Issue 2: April 2018, pp 12 - 25. www.aetsjournal.com ISSN (Online) : 2394 - 6237

--- ---

16

V E

−

×

IV. MAXIMUM CLIQUES IN IDNC GRAPHS

AND THE UNIQUE COVERAGE PROBLEM

Given a side information matrix A, we form an Instantly

Decodable Network Coding (IDNC) graph corresponding to A

as in [4]: we create a vertex vij when user ui still wants packet

pj. For instance, for matrix A in

Example 1, there is a vertex for each entry 1 in the matrix.

Given a vertex vij, we use the term user index of vij to indicate

i and packet index of vij to indicate j. There is an edge between

two vertices vij and vkA if one of the below conditions hold:

(i) j = A: In this case, both users ui and uk want the same

packet p = pj = pA.

(ii) pj k and pA i: In this case, user uk has packet

pj that user ui still wants, and vice versa.

Figure 2. The Instantly Decodable Network Coding (IDNC) graph of
Example 1. Solid edges are edges of type (i) and dashed edges are edges
of type (ii). There are three maximum cliques: {v13, v21, v31}, {v13, v22, v32}, and
{v14, v24, v34}, all of which are of size 3.

Denote the IDNC graph corresponding to a matrix A by tt
A

= (,). Figure 2 shows the IDNC graph corresponding to the

side information matrix given in Example 1.

A. Cliques and Instantly Decodable Packets

Proposition 3: Finding an optimal instantly decodable code

given a side information matrix A is equivalent to finding a

maximum clique in the corresponding IDNC graph tt
A
.

The proof is provided in Appendix A. Intuitively, let us

consider the clique involving v13, v21, and v31 in Example 1.

XORing all packets corresponding to vertices of this clique,

i.e., p1 p3, forms an instantly decodable packet because

(i) user 1 must have p1, and users 2 and 3 must have p3,

otherwise there are no edges (v13, v21) and (v13, v31), and

(ii) each component of the coded packet is wanted by the

user corresponding to the row of the vertex. Finally, the clique

size equals 3, which is the number of beneficiary users.

B. Real-Time IDNC and Unique Coverage

In a previous work [35], we showed that Real-Time IDNC

is NP-Hard. Here we show that Real-Time IDNC is in fact

equivalent to the Unique Coverage problem [11], thus it is not

only NP-Hard but also hard to approximate. Recall that the

Unique Coverage problem is formulated follows:

Given a universe U = e1, , en of elements and a

collection S = S1, , Sm of subsets of U . Find a subcollection S
×

S to maximize the number of elements that are uniquely

covered, i.e., appear in exactly one set of S
×
.

Let us call such a subcollection S
×
 a ―unique cover‖.

Given a Real-Time IDNC problem, one can construct the

corresponding Unique Coverage problem as follow: for

each user ui, create an element ei, and for each packet pj,

create a subset Sj such that if pj is wanted by ui then Sj contains

ei. Given a Unique Coverage problem, one can also construct

the corresponding Real-Time IDNC problem by reversing the

above mapping. Consequently, based on the approximation

result by Demaine et al. [11], we have the following result.

Theorem 4: Given a Real-Time IDNC problem with the

side information matrix An×m and its corresponding Unique

Coverage problem, finding an optimal instantly decodable

packet and an optimal unique cover are equivalent. And

theyare all hard to approximate within a factor of Ω(1/ log
σ

n), for some constant σ depending on s, assuming that NP ¢

BPTIME(2ng
) for some s> 0.

The proof of this theorem is provided in Appendix B.

V. MAXIMUM CLIQUES IN RANDOM

IDNC GRAPHS

In this section, we investigate Random Real-Time IDNC.

In particular, we assume that each user, ui, i [1, n], fails

to receive a packet, pj, j[1, m], with the same probability, p (0,

1), independently. For ease of analysis, we assume that m is

linear in n: m = dn, for some constant d > 0. As we will show

subsequently, our results also hold when m is a constant or is

polynomial in n. A random IDNC graph, denoted as tt
A
(p), is

the graph corresponding to a side information matrix A; and

each entry of A equals 1 with probability p and 0 with

probability q = 1 p independently from other entries.

In what follows, we will provide a concentration result of

the size of the maximum clique, i.e., the clique number, of

random IDNC graphs. This result facilitates the design of a

polynomial-time algorithm to find the maximum clique w.h.p.

In particular, we will show the followings:

(i) For any p (0, 1), the clique number for almost every

graph in tt
A

(p) equals j∗pq
j∗−1n, where j∗ = argmaxj

m,j , Njpq
j−1

. And the optimal recovery packet involves

combining j∗ packets w.h.p.

(ii) The maximum clique can be found in polynomial time

in n w.h.p. We provide an explicit algorithm, Max Clique, to

find it. Consequently, the optimal recovery packet can be

computed in polynomial time in n w.h.p.

Comparison to Erdős-Rényi Random Graphs: Clique num-

bers of Erdős-Rényi random graphs with n vertices and p =

1/2 are known to be close to 2 log2 n [37]. However, it is

widely conjectured that for any constant s > 0, there does not

exist a polynomial-time algorithm for finding cliques of size

(1 + s) log2 n with significant probability [38]. In contrast, for

random IDNC graphs with n m vertices, where m is

polynomial in n, we show that the clique numbers are linear

in n, and the corresponding cliques can be found in polynomial

time in n.

 International Journal on Applications in Information and Communication Engineering

Volume 4: Issue 2: April 2018, pp 12 - 25. www.aetsjournal.com ISSN (Online) : 2394 - 6237

--- ---

17

C

k

· · · −

Number of Packets and Number of Users: Let us consider

two practical real-time applications: live video streaming and

multi-player games.

In live video streaming, there is typically a sliding widow

where packets expire if they fall off this window. The number

of packets sent per window is a function of the widow size

(e.g., 1 second [3]), video bit rate (e.g., 2 Mbps), and packet

size (e.g., 1500 B). In other words, it does not depend on the

number of users. For analysis purposes, for this case, the

number of packets could be considered a constant w.r.t. n.

In MicroPlay [1], m is linear in n if there is no overhearing

available, i.e., only the Access Point can broadcast (as in a

typical WiFi LAN setting). This is because m directly relates

to the number of command packets a player generates: a player

generates command packets; packets are unicast to the Access

Point; then the Access Point broadcasts them.

In summary, for the class of practical real-time applications

we consider, m is typically a constant or linear in n, and our

results are applicable in these cases. Theoretically, our results

hold when m is polynomial in n.

A. Clique Number of Random IDNC Graphs

First, observe that any k 1’s that lie in the same column of

the side information matrix A form a clique of size k in the

IDNC graph. Since the expected number of 1’s in a single

column of A is np, the expected size of this type of cliques

that involve a single column is np. As a result, we expect the

maximum clique size to be linear in n.

Fix a set Cj of j columns. A row r is said to be good with

respect to Cj if among the j columns, it has 1 one and j − 1

zeros. The probability that a row is good w.r.t. C is

Let ZCj be the number of good rows w.r.t j . Then ZCj

has a binomial distribution Bin(n, f (j)).

Let XCj be the size of the maximum clique that has at least

one 1 (corresponding to a vertex) on every column of In

other words, the 1’s representing the vertices of the clique

are on j columns of Cj, or the clique touches j columns of

Cj. Observe that if j = 1, then f (1) = p, and XC1 = ZC1,

which is the number of 1’s in the chosen column. Thus, XC1

has a Binomial distribution Bin(n, p). For j > 1, XCj ƒ=

ZCj

since the set of good rows may not have a 1 in every column

in Cj. The following lemma states that, when ZCj is

sufficiently large, XCj = ZCj w.h.p.

Lemma 5: For a set Cj of j columns, where j is a constant,

there exists a constant kj > 0 such that for all k ≥ kj,

Proof: For k ≥ j > 0, let B
j
 denote the number of ways to

put k 1’s into a matrix of size k × j such that (i) each row has

one 1, and (ii) each column has at least one 1. Note that

B
1
 = 1, and we have the following recurrence:

This recurrence states that the number of ways to put k 1’s

into k rows (each row has one 1) using exactly j columns

equals to the number of ways to put k 1’s into k rows without

any column restriction except for the cases where there are

1, 2, ,j 1 empty columns. It can be shown by induction

(details are in Appendix C) that

The following lemma states that XCj , the size of the max-

imum clique that touches all j columns, heavily concentrates

around nf (j) for large n.

This probability goes to 0 as n .

The proof is provided in Appendix D. Intuitively, this result

follows from XC = ZC w.h.p. (Lemma 5), and the fact

that the Binomial distributed ZCj , the number of good

rows, concentrates heavily around its mean, nf (j). Note that

μδ is Θ(
√

n ln n); thus, XCj is within Θ(
√

n ln n) of nf (j)

w.h.p.

Next, for a constant j, let Xj be the size of the maximum

clique that touches any j columns. Xj also heavily concen-

trates around nf (j). Recall that m = dn, for some constant

d> 0. Formally,

.

 International Journal on Applications in Information and Communication Engineering

Volume 4: Issue 2: April 2018, pp 12 - 25. www.aetsjournal.com ISSN (Online) : 2394 - 6237

--- ---

18

≥

We note that the above concentration result also holds when

the number of packets, m, is a constant or polynomial in the

number of users.

In particular, in the case that m is a constant, i.e., m = d, the

concentration is more, i.e., the bounds are tighter:

In the case that m is polynomial in n, i.e., m = n
d
, for some

constant d > 0, we need a larger constant c (such that c> dj),

which means less concentration (as δ is larger):

Let kj be the minimum positive integer value of k such that

Apparently, the results do not hold when m is exponential

in n. As mentioned, the cases where m is either a constant or

linear in n are sufficient for practical real-time applications

considered in this work, such as video streaming or multi-

player games .

Figure 3. Plot of f (j) = jp(1 − p)j−1 for different loss rate p.

For a large enough n, it is clear that k

×
 < k

××
.

plot shows that (i) for p 0.5, f (j) is a decreasing function,

and for p < 0.5, f (j) initially increases then decreases, and

(ii) j∗ increases as p decreases, which suggests the following

key insight:

The number of packets that should be coded together

increases when the loss rate decreases.

Fig. 4 plots the values of f (j∗) and the corresponding

values of j∗. An important observation from Fig. 4 is that even

when the loss rate is small, the clique size is still high. For

instance,

when p = 0.1, we have j∗ = 9 and f (j∗) c 0.38, which

means that the optimal packet involves coding 9 plain

packets together, and this packet will benefit about 38% of the

users. To better understand the implication of this result, let us

 International Journal on Applications in Information and Communication Engineering

Volume 4: Issue 2: April 2018, pp 12 - 25. www.aetsjournal.com ISSN (Online) : 2394 - 6237

--- ---

19

−

discuss two extreme cases: large p and small p. When the loss

rate p is large (e.g., greater than 0.9), our analysis shows that

j∗ = 1, thus f (j∗) = f (1) = p, indicating that w.h.p,

Figure 4. Values of f (j∗) and its corresponding j∗. The clique number

heavily concentrates around f (j∗) × n, and j∗ is the number of packets

should be coded together.

the maximum clique corresponds to some (roughly) pn

nodes, all having a 1 under the same packet in the side

information matrix. Therefore, the broadcast of that single

uncoded packet is most likely optimal. When p is small (e.g.,

less than 0.1), our analysis shows that j∗ > 9, i.e., there is a

likely a clique of size j∗(1 p)j
∗−1pn > pn, involving nodes

in j∗ different columns, and these nodes are connected in the

IDNC graph by the edges of the second type. For such

cliques, we need to code. We further elaborate on these cases

at the end of Section VII-A, where we discuss the simulation

results.

B. Finding a Maximum Clique

Based on the analysis in the previous section, we propose

Max Clique (Algorithm 1). It examines all cliques that touch

j columns, for all j combinations of m columns, where j is

within a small constant Δ neighborhood of j∗, where Δ is a

small constant, e.g., Δ 3.

Lemma 9: For a sufficiently large n, Algorithm 1 finds a

maximum clique of a given random IDNC graph w.h.p.

Proof: Because Max Clique examines all cliques that touch

j∗ columns, the correctness of the algorithm follows from

Corollary 8.

Δ improves the performance of the algorithm in practice,

when n may not be sufficiently large. In Section VII, we how

that a small value of Δ = 3 is sufficient for Max Clique to

achieve top performance for n = 5, 8, 15. Note that the larger n

is, the smaller Δ has to be.

Complexity: Recall that jmax = argmaxj Nf (j). If jmax <

m, then j∗ = jmax. For a constant loss rate p, jmax is a

constant. Then for each loop starting at Line 3

runs at most 2Δ m jmax+Δ times. The for loop starting at

Line 5 runs n times. The if condition check at Line 6

examines up to jmax + Δ entries. The total runtime is at

Most .

Thus in this case, Max Clique runs in polynomial time in n

if m is polynomial in n.

If m ≤ jmax, then j∗
. = mΣ. The .forΣeach loop starting at

. Σ

Δ n(m+Δ) = O(nm).

Thus, in this case, Max Clique

n times. The if condition check at Line 6 examines up to

m + Δ entries. The total runtime is

mΔ+1= Δ

also runs in polynomial time in n if m is polynomial in n.

Optimal Coded Packet: Given the vertices of the maximum

clique output by Max ≤ Clique, one can readily compute the

optimal instantly decodable packet by XORing the packets

whose indices correspond to the packet indices of the output

vertices, as indicated in Proposition 3.

VI. THE MULTI-SLOT MAX CLIQUE

ALGORITHM

So far, we consider the scenario where the source has a

single slot to broadcast a single recovery packet. However, for

some real-time applications, for the same feedback matrix, the

source may have opportunities to broadcast multiple recovery

packets. In this section, we formulate the problem of loss

recovery for the scenario where there is a small constant

number of slots. We show that this problem is also hard to

Δ
starting at Line 5 runs

m−Δ

 International Journal on Applications in Information and Communication Engineering

Volume 4: Issue 2: April 2018, pp 12 - 25. www.aetsjournal.com ISSN (Online) : 2394 - 6237

--- ---

20

∈ ∈ −

approximate. We then extend our analysis in the probabilistic

setting for the single-slot scenario to the multi-slot scenario,

where the number of packets is sufficiently large. Based on the

analysis, we present the Multi-Slot Max Clique algorithm that

can find a near-optimal solution w.h.p.

A. Multi-Slot Formulation

The number of transmission opportunities (time slots) for

recovery packets depends on many factors. For example, in

CrowdWiFi [2], [3], the video base station only broadcasts

recovery packets when its incoming buffer does not contain

any new packet (new video data) or any critical packet (packets

medium, the reception rates at the users, and maybe on other

factors as well. We formulate the problem of loss recovery for

the multi-slot scenario as follows:

Consider a source that broadcasts a set of packets, to a set of

users . Each user, u, already knows a subset of them, u ,

through the previous broadcasts and wants the rest, u =u.

Given t time slots, where t is a small constant, 0 < t <u∈U u

, the goal is to choose up to t instantly decodable packets to

broadcast from the source, so as to maximize the number of

lost packets that the users can recover.

The multi-slot problem is at least as hard to approximate as

the single-slot problem. This is a direct result of the single-

slot analysis. (The reduction from the multi-slot problem to

single-slot problem is by setting t = 1.) Next, we analyze the

multi-slot problem in the probabilistic setting, where the

number of packets is sufficiently large (as defined below).

We then present the Multi-Slot Max Clique algorithm, that is

constructed based on the analysis and can find a near-optimal

solution w.h.p.

B. The Multi-Slot Max Clique Algorithm

Analysis: Consider the probabilistic setting of the t-slot

scenario with uniform loss rate p. For the analysis in this

section, we assume that m is sufficiently large:

m> tjmax,

where jmax = argmaxj Nf (j) = argmaxj Njp(1 p)j−1.

Recall that for the single-slot scenario, the maximum clique

concentrates around nf (jmax) w.h.p. The key observation we

use to extend the single-slot result to the multi-slot scenario is

that the size of the maximum clique does not depends on the

number of packets but only depends on the number of users

and the loss rate.

Let us analyze the following algorithm, called ―Multi-Slot

Max Clique with Removal‖ or MSMCR for short, that uses

Max Clique consecutively t times: for each time i = 1, , t, run

Max Clique to find the maximum clique Ci, then remove the

jmax columns that are associated with Ci before the next

iteration. Finally, the algorithm outputs C1, , Ct as the resulting

cliques. Since these cliques have non-overlapping vertices, the

size of the solution, i.e., the number of packets that can be

recovered, denoted by MSMCR, is
t
 Ci . Now, let OPT

denote the size of the optimal solution for the t-slot

problem. The following lemma states that, in the worst case,

MSMCR is (t 1) 2μδ smaller than OPT w.h.p.

already broadcast but missing at some of the users and

needed immediately for playback). In general, the number of

recovery time slots depends on the video bit rate, the outgoing

transmission rate of the station, the loss rate of the wireless

This probability goes to 0 as n .

The proof of this lemma is provided in Appendix E.

Algorithm: We construct the Multi-Slot Max Clique algo-

rithm based on the MSMCR algorithm. Algorithm 2 describes

Multi-Slot Max Clique. Multi-Slot Max Clique is an

improvement of MSMCR as it does not perform the removal

step, i.e., it investigates all cliques that MSMCR does and

some more. Consequently, the solution of Multi-Slot Max

Clique is at least as good as MSMCR.

In particular, in the first slot, it uses the result of Max Clique

(Line 1). In subsequent slots, it executes a variant of Max

Clique (Line 5–17), where the criterion to choose the current

clique is that its union with the previously chosen cliques

should have the largest number of vertices (Line 13). In other

words, at step i > 1, clique Ci is chosen such that the union

of all the cliques C1, , Ci covers the largest number of vertices.

 International Journal on Applications in Information and Communication Engineering

Volume 4: Issue 2: April 2018, pp 12 - 25. www.aetsjournal.com ISSN (Online) : 2394 - 6237

--- ---

21

⊕

omplexity: The Multi-Slot Max Clique algorithm essen-

tially executes Max Clique t times where t is a small constant.

Thus, it is still polynomial in n when m is polynomial in n.

Coded Packets: Given the vertice sets C1, , Ct of

cliques output by Max Clique, one can compute an instantly

decodable packet corresponding to each clique as before.

C. Packet Priority

Different packets in a real-time application may have differ-

ent priorities. For example, in a video streaming application, a

packet, pj, could be more urgent than others if it is needed for

immediate video playback at a receiver, ui. (CrowdWiFi has

a similar concept of α-critical packets [3].) In this scenario, a

coded packet should be constructed to facilitate the immediate

recovery of pj at user ui. Finding the optimal coded packet here

is equivalent to finding the maximum clique that has vertex vij

in the IDNC graph.

This variation of the problem, called Priority IDNC, is also

at least as hard to approximate as Real-Time IDNC. The sketch

of the reduction is as follow. Any Real-Time IDNC problem

can be mapped into an instance of Priority IDNC by creating

a new user u and a new packet p, where u has all existing

packets but not p, and all existing users have p. This pair u,

p then corresponds to the only new vertex, v, in the new IDNC

graph, and this vertex connects to all existing vertices.

Thus,is a clique in the original IDNC graph if and only if v

is a clique in the new IDNC graph. Therefore, any

algorithm that solves Priority IDNC can be used to solve Real-

Time IDNC: the solution to Real-Time IDNC can be

obtained by removing v from the solution of Priority IDNC.

In the probabilistic setting, Max Clique can be used to find

a good coded packet for Priority IDNC as follow. Given a

feedback matrix A and an urgent vertex vi,j, we form a smaller

feedback matrix A× by removing all users who do not have

packet pj and all packets that user ui does not have. Now, if

is a clique in tt
A∗

then vi,j is a clique in tt
A

. (Note that

the reverse is not true.) This is because every vertex in tt
A∗

connects to vi,j by an edge of the second type. Thus, we can

add vi,j to the solution of Max Clique for tt
A∗

to form a

solution for the original Priority IDNC problem.

Other greedy-based coding schemes, e.g., COPE-Like and

CrowdWiFi’s regular coding scheme [3], [12], that form a

coded packet by consecutively adding plain packets in multiple

rounds (described in detail in Section VII-A) can be modified

to heuristically address this Priority IDNC problem as well.

The modification is by starting with pj in the first round, and

maintaining the decodability of pj at ui at every subsequent

round. This approach is similar to the Critical Recovery

algorithm in CrowdWiFi [3].

VII. PERFORMANCE EVALUATION

A. Numerical Evaluation

In this section, we use simulation to compare the perfor-

mance of the proposed algorithms: Max Clique (Algorithm 1)

and Multi-Slot Max Clique (Algorithm 2) against several

baselines: an optimal repetition-based algorithm, a COPE-like

algorithm [12], the recovery algorithm used by CrowdWiFi [3],

the Ω(1/ log n)-approximation algorithm [11], and the opti-

mal solution (via brute force). We describe these baseline

algorithms below.

Best Repetition: This algorithm sorts the plain packets in the

decreasing order of the number of users who still wants the

packets. Then it rebroadcasts the packets in this order. This is

inherently the best repetition strategy.

COPE-Like [12]: For the single-slot case, this algorithm

goes through all the packets that are still wanted by at least

one user in a random order, and it tries to compute a coded

packet, c, that is instantly decodable to all users. In particular,

it begins by selecting the first packet of a random permutation,

c = p1. It then goes through the rest of the packets one by

one in that order. At each step j, j > 1, it XORs the next

packet with c if the resulting c is still instantly decodable

to users; otherwise, it consider the next packet in the line.

For the multi-slot scenario, this process is repeated with a

smaller coding pool where the packets already used in the

previous slots are removed.

Greedy-Exhaustive [3]: This refers to the coding scheme

used in the Recovery Algorithm of CrowdWiFi for video

streaming [2], [3]. This algorithm is similar to the above

COPE-Like algorithm, except for two changes: (i) it starts

with c = p1, where p1 is wanted by the most number of

users, and (ii) at each step j > 1, it chooses pj such that c

= c pj is instantly decodable to the most number of users, i.e.,

by exhaustively searching among all remaining packets.

It stops when it cannot find a new c that increases the

number of benefiting users. As described, this algorithm’s

runtime is in O(m!), which is exponential in n. For a fair

baseline of comparison against our multi-slot algorithm, we

extend this coding scheme to support the multi-slot scenario

by removing packets already used in the previous slots from

the coding pool,1 similar to the COPE-Like.

Ω(1/ log n)-Approximation [11]: We will simply refer to

this as Approximation. The algorithm was originally given

for the generalized Budgeted Unique Coverage problem.

To adopt the algorithm for the Unique Coverage problem,

we set the profits of all elements to 1, costs of all subsets

to 1, and the budget to the number of subsets, which is m. We

refer the reader to Section 4.1 of the original work of Demaine

et al. [11] for the detailed description of the algo- rithm. We

also extend this coding scheme to support the multi- slot

scenario by removing already used in the previous slots from

the coding pool.

Optimal (Brute Force): Given a feedback matrix A and 0 <

d < u∈U u , the optimal algorithm exhaustively search for d

or less cliques that cover the largest number of vertices in the

 International Journal on Applications in Information and Communication Engineering

Volume 4: Issue 2: April 2018, pp 12 - 25. www.aetsjournal.com ISSN (Online) : 2394 - 6237

--- ---

22

IDNC graph of A. The algorithm runtime is in O(2dm) as it

enumerates all subsets of size d or less of the set of all possible

coded packets. This is clearly not practical for large

problem instances and is only used here to assess how far

from the optimal our proposed algorithms perform.

Random Repetition: For reference, we also include the

Random Repetition algorithm, which chooses a random per-

mutation of the packets that are still wanted by at least one

user, then rebroadcasts them in this order.

Simulation Setup: For each loss rate ranging from 1%

to 99%, per 1% increment, we randomly generate 100 side

information matrices. We then run all the algorithms on

these matrices. For the Max Clique and Multi-Slot Max

Clique algorithms, we set Δ, the neighborhood around

j∗, to 3. Fig. 5 plots the average numbers of packets

that

can be recovered by the users for three parameter

settings

{n = 15,m = 15,t = 1}, {n = 8,m = 8,t = 2},

and {n = 5,m = 5,t = 3}. Note that in this set of

simulation, to accommodate the expensive computation of the

Optimal algorithm, we have to decrease the problem size as we

increase the number of slots. Omitting the Optimal solution,

Fig. 6 provide plots for larger problem size for the multi-

slot scenarios: {n = 15,m = 15,t = 2}, {n = 15,m = 15,

Figure 5 (a)

Figure 5 (b)

Figure 5 (c) Max Clique and Multi-Slot Max Clique have close to optimal
performance while consistently outperforming the baselines when there are 5

users and 5 packets to 15 users and 15 packets. (a) n = 15 users, m =

15 packets, t = 1 slot. (b) n = 8 users, m = 8 packets, t = 2 slots.

(c) n = 5 users, m = 5 packets, t = 3 slots.

t = 3}, and {n = 15,m = 15,t = 4}. We have also performed

simulation for larger settings, {n = 20,m = 20,t = 1} and {n

= 20,m = 40,t = 1} [35] that show similar results and we

Figure 6 (a)

Figure 6 (b)

 International Journal on Applications in Information and Communication Engineering

Volume 4: Issue 2: April 2018, pp 12 - 25. www.aetsjournal.com ISSN (Online) : 2394 - 6237

--- ---

23

 Figure 6 (c) Multi-Slot Max Clique consistently outperforms the
baselines when there are 15 users and 15 packets. (a) n = 15 users, m = 15

packets, t = 2 slots. (b) n = 15 users, m = 15 packets, t = 3 slots.(c) n = 15

users, m = 15 packets, t =4 slots.

omit here due to redundancy. For clarity, we skip plotting

the standard deviations, which range from 0 to 3 for all

algorithms. Results: In Fig. 5, we can observe that both the

proposed Max Clique and Multi-Slot Max Clique algorithms

perform very close to the Optimal algorithm. In particular, for

t = 1 in Fig. 5(a), Max Clique has identical performance to the

Optimal 91% of the time. For t = 2, 3 in Fig. 5(b) and 5(c),

Multi-Slot Max Clique has identical performance to the

Optimal 50% of the time and 98% of the time within 0.1 of

the optimal value. This validates our analysis of the single-slot

scenario and demonstrates that the Multi-Slot Max Clique can

also find near-optimal solution for the multi-slot scenario.

One can also observe from Fig. 5 that the proposed Max

Clique and Multi-Slot Max Clique algorithms consistently

and significantly outperform the baselines. In particular, for

the case {n = 15,m = 15,t = 1}, on average, Max Clique

performs 1.3 times better than both the Best Repetition and

COPE-Like, with the highest improvement over Best

Repetition and COPE-Like at 3.3 and 1.6 times, respectively.

It also performs up to 1.12 times better than the state-of-the-art

Greedy-Exhaustive algorithm, noticeably in the wide range of

loss rate from 10% to 60%; note that Greedy-Exhaustive has

exponential runtime. We also observe that the Approximation

algorithm has poor performance: only slightly better than the

Random Repetition in the single slot scenario and worse in

the multi-slot scenarios.

In addition, Fig. 6 demonstrates the consistent superior

performance of Multi-Slot Max Clique for a larger problem

size {n = 15,m = 15} and more number of slots {t = 2,

3, 4}. For instance, for the case {n = 15,m = 15,t = 2}, ,

Multi-Slot Max Clique improves by a factor of 1.3 on average

over both COPE-Like and Best Repetition, and it performs up

to 1.6 times better than the COPE-Like and up to 2.7 times

better than Best Repetition.

Two interesting regions can be observed from the curves in

both Fig. 5 and Fig. 6, i.e., across all settings:

Repetition Region: When the loss rate is larger than a certain

threshold: about 65% for {n = 15,m = 15} (and also for

{n = 20,m = 20} as in [35]), the performance of (Multi-

Slot) Max Clique, Best Repetition, Greedy-Exhaustive, and

Optimal are the same. This indicates that beyond this point,

it is optimal to just send uncoded packet(s). This is because

there are very likely uncoded packets that are missed by many

users due to high loss rate. Thus, we refer to this region as

the Repetition region.

Easy Coding Region: When the loss rate is less than another

threshold: about 10% for {n = 15,m = 15} (or 5% for

{n = 20,m = 20} [35]), the performance of (Multi-Slot)

Max Clique, Greedy-Exhaustive, COPE-Like, and Optimal

are very similar. We look into this region carefully in our

simulation, and we find that for this low loss rate region,

best coded packets typically involve many uncoded packets but

there are many opportunities to code. Thus, they can be easily

found with a greedy approach. Furthermore, they typically

have similar benefit. Consequently, all the coding schemes

investigated here have similar performance that is close to the

Optimal. We refer to this region as the Easy Coding region.

Best Practice: The above observations suggest that it would

be beneficial to figure out if an application operates in

either of the Repetition or Easy Coding regions, e.g., by

applying multiple algorithms described here and monitoring

their performance for a short period of time. Then for the

Figure 7. MicroPlay networking model: One phone acts as the WiFi access
point and as the game server. This phone uses WiFi broadcast to disseminate

its game commands.

best performance and speed, one could use the simple Best

Repetition for the Repetition region or COPE-Like for the

Easy Coding region as both of these simple algorithms run

in just linear time. Outside of these regions, Multi-Slot Max

Clique is the best candidate.

Commercial systems, like CrowdWiFi [3], could readily

get significant improvement in both speed and performance

by replacing their existing coding algorithms, e.g., Greedy-

Exhaustive, with Multi-Slot Max Clique or a combination of

algorithms as described above.

B. Trace-Based Evaluation

In this section, we evaluate the performance of Max

Clique in comparison with the baselines, Best Repetition and

COPE-Like, using real network traces of an Android

application called Racer [1]. Racer is a real-time multi-player

racing game implemented on top of a networking framework,

called MicroPlay, that we previously developed [1]. MicroPlay

exploits wireless broadcast to disseminate input commands

from one player to the rest in a timely manner to support

accurate game rendering and low latency.

 International Journal on Applications in Information and Communication Engineering

Volume 4: Issue 2: April 2018, pp 12 - 25. www.aetsjournal.com ISSN (Online) : 2394 - 6237

--- ---

24

In particular, in Racer, each player’s car races around a

closed rectangular track and broadcast its movement continu-

ously to the rest of the players. A player uses the broadcast

packets to update the positions of the other players’ cars. In

the context of this work, we examine the packets broadcast

by one player, who is acting as the game server and the WiFi

access point to the group, depicted in Fig. 7. This scenario we

select for evaluation here, in principle, matches the broadcast

scenario that we examined earlier in our analysis in Fig. 1.

C. Trace Collection and Description:

We created a Racer game session that has 5 players: 1

server and 4 clients, as shown in Fig. 7. The hardware in use

consist of 3 Samsung Captivate and 2 Nexus S phones, all

running Android OS

2.3 (Gingerbread). The players are scattered in an on-

campus cafeteria, whose area is of sizes approximately 40 x 40

meters. The game session occurs during a busy lunch hour.2

Each packet broadcast by the server has a unique ID.

We implemented a statistics-collection module within the

Racer game client to capture the reception of the packets

broadcast by the server: each client logs the packets it were

able to receive and the time it received them. The game

session lasted about 15 minutes, and during the game, the

server broadcast 19,059 packets, about a packet every 47 ms

on average.

The average reception rate of all 4 clients during the game

is shown in Fig. 8(a) by the ―No Recovery‖ line. Each

point plotted represents the average reception rate of packets

broadcast within a 10-second bin. Fig. 8(a) shows that the

average reception rate of the clients is high: most of the time

above 90%. Nevertheless, there are several instances when the

average reception rate drops below 90%, for example, from

second 574 to 738. Also, the average reception rate drops as

low as 23% at second 811. The reception rates are quite similar

across the clients. For this reason, we skip reporting the plots

of the individual client rates.

D. Settings:

 For each batch of packet of size B, we compute a recovery

packet using the Best Repetition, COPE-Like, and Max Clique

algorithms with loss rate p = 12% (average rate we

observed previously in the same environment). This recovery

packet is to be broadcast at the end of each batch by the server

to recover packet losses at the client. For evaluation purposes,

we assume that this packet would be successfully received by

all the clients. We then compute the new reception rates at the

clients for each recovery scheme.

E. Results:

Fig. 8(a) plots the average reception rate when each of the

recovery schemes is used for batch size B = 10. It could be

observed from this figure that Max Clique consistently

outperforms the COPE-Like and Best Repetition. In other

words, the improvement of the average reception rate is higher

when Max Clique is used to compute the recovery packet.

In more details, Fig. 8(b) plots the number of beneficiary

users when each of the recovery scheme is used. Each point

plotted is the average over multiple recovery packets within

a 10-second bin. Fig. 8(b) shows that the recovery packets

computed by Max Clique consistently benefit more users:

on average, Max Clique helps 16% more users than Best

Repetition and 26% more users than COPE-Like. The perfor-

mance gaps between Max Clique and the baselines are more

noticeable when the reception rates are low, e.g., between

second 574 and 738, or at second 811, where Max Clique

helps 50–250% more users than the others.

We also perform similar evaluation for batches of sizes B

= 5 and B = 20. For B = 5, the average performance

improvement of Max Clique over Best Repetition is 5% and

over COPE-Like is 12%, which are less than those when

B = 10. This is due to the reduced number of coding

opportunities (over just 5 packets). For B = 20, the average

performance improvement of Max Clique over Best Repetition

is 12% and over COPE-Like is 28%, which are similar to those

when B = 10. This implies that B = 10 creates sufficient

coding opportunities for the loss rates of this set of traces.

Finally, unlike the numerical results reported in the previous

section, Fig. 8 shows that Best Repetition consistently outper-

forms COPE-Like. This is likely due to the dependency of

the packet losses at the clients: a packet lost at a client is

likely to be lost at other clients, which implies that re-sending

this packet might benefit many clients. This also occurs when

B = 5 and B = 20.

VIII. CONCLUSION

In this paper, we study packet loss recovery in wireless

broadcast for real-time applications, namely video streaming

and multi-player games.

First, we investigate the scenario where the source has a

single time slot to broadcast a single recovery packet. We

formulate the Real-Time IDNC problem, which seeks to

compute a recovery packet that is immediately beneficial to

the maximum number of users. We show that Real-Time

IDNC is equivalent to Unique Coverage [11], which is hard to

approximate. We then analyze the Random Real-Time IDNC,

where each user is assumed to lose every packet with the

same probability independently. When the number of packets

is polynomial in the number of users, we show that the optimal

packet could be computed in polynomial time in the number

of users w.h.p. We provide an explicit algorithm, called Max

Clique, to find the optimal packet w.h.p.

Second, we consider the scenario where the source has a

small constant number of time slots to send multiple instantly

decodable recovery packets, which is at least as hard to

approximate as Real-Time IDNC. For the probabilistic version

of the multi-slot problem, we propose Multi-Slot Max Clique,

a polynomial-time algorithm that is developed based on Max

Clique and provably finds a near-optimal solution w.h.p. when

the number of packets is sufficiently large.

Finally, we evaluate the proposed algorithms numerically

(via simulation) as well as experimentally (based on real

 International Journal on Applications in Information and Communication Engineering

Volume 4: Issue 2: April 2018, pp 12 - 25. www.aetsjournal.com ISSN (Online) : 2394 - 6237

--- ---

25

network traces). The results demonstrate that (i) the proposed

algorithms perform very close to the optimal, and (ii) they

consistently and significantly outperform all the state-of-the-

art baselines.

IX. ACKNOWLEDGMENT

The authors would like to thank the anonymous review-

ers who suggested the connection between the Real-Time

IDNC and the Unique Coverage problems and provided many

thoughtful comments that help them to improve this paper.

References

[1] A. Le, L. Keller, C. Fragouli, and A. Markopoulou, ―MicroPlay:

A networking framework for local multiplayer games,‖ in Proc.

ACM SIGCOMM Workshop Mobile Gaming, Helsinki, Finland, 2012,
pp. 155–160.

[2] CrowdWiFi Streaming, Streambolico, Porto, Portugal, 2016.

[3] D. Ferreira, R. A. Costa, and J. Barros, ―Real-time network coding

for live streaming in hyper-dense WiFi spaces,‖ IEEE J. Sel. Areas

Commun., vol. 32, no. 4, pp. 773–781, Apr. 2014.
[4] S. Sorour and S. Valaee, ―Adaptive network coded retransmis-

sion scheme for wireless multicast,‖ in Proc. IEEE Int. Symp. Inf.

Theory (ISIT), Seoul, South Korea, Jun./Jul. 2009, pp. 2577–2581.
[5] S. Sorour and S. Valaee, ―On minimizing broadcast completion delay for

instantly decodable network coding,‖ in Proc. IEEE Int. Conf. Commun.

(ICC), Cape Town, South Africa, May 2010, pp. 1–5.
[6] S. Sorour and S. Valaee, ―Minimum broadcast decoding delay for

generalized instantly decodable network coding,‖ in Proc. IEEE Global

Commun. Conf. (Globecom), Miami, FL, USA, Dec. 2010, pp. 1–5.
[7] S. Sorour and S. Valaee, ―Completion delay minimization for instantly

decodable network coding with limited feedback,‖ in Proc. IEEE Int.

Conf. Commun., Kyoto, Japan, Jun. 2011, pp. 1–5.
[8] S. Sorour and S. Valaee, ―Completion delay reduction in lossy feedback

scenarios for instantly decodable network coding,‖ in Proc. IEEE Int.

Symp. Pers., Indoor, Mobile Radio Commun. (PIMRC), Toronto, ON,

Canada, Sep. 2011, pp. 2025–2029.

[9] S. Sorour and S. Valaee, ―On densifying coding opportunities in instantly

decodable network coding graphs,‖ in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Boston, MA, USA, Jul. 2012, pp. 2456–2460.

[10] N. Aboutorab, S. Sorour, and P. Sadeghi, ―O2-GIDNC: Beyond

instantly decodable network coding,‖ in Proc. IEEE Int. Symp. Netw.
Coding (NetCod), Calgary, AB, Canada, Jun. 2013, pp. 1–6.

[11] E. D. Demaine, M. T. Hajiaghayi, U. Feige, and M. R. Salavatipour,

―Combination can be hard: Approximability of the unique coverage
problem,‖ in Proc. ACM-SIAM Symp. Discrete Algorithm (SODA),

Miami, FL, USA, 2006, pp. 162–171.

[12] L. Keller, E. Drinea, and C. Fragouli, ―Online broadcasting with network
coding,‖ in Proc. IEEE Int. Symp. Netw. Coding (NetCod), Hong Kong,

Jan. 2008, pp. 1–6.

[13] P. Sadeghi, D. Traskov, and R. Koetter, ―Adaptive network coding for
broadcast channels,‖ in Proc. IEEE Int. Symp. Netw. Coding (NetCod),

Lausanne, Switzerland, Jun. 2009, pp. 80–85.

[14] S. Katti et al., ―XORs in the air: Practical wireless network coding,‖

 IEEE/ACM Trans. Netw., vol. 16, no. 3, pp. 497–510, Jun. 2008.

[15] X. Li, C.-C. Wang, and X. Lin, ―On the capacity of immediately-

decodable coding schemes for wireless stored-video broadcast with hard
deadline constraints,‖ IEEE J. Sel. Areas Commun., vol. 29, no. 5, pp.

1094–1105, May 2011.

[16] Y. Birk and T. Kol, ―Coding on demand by an informed source (ISCOD)
for efficient broadcast of different supplemental data to caching clients,‖

IEEE Trans. Inf. Theory, vol. 52, no. 6, pp. 2825–2830, Jun. 2006.

[17] S. Y. El Rouayheb, M. A. R. Chaudhry, and A. Sprintson, ―On the
minimum number of transmissions in single-hop wireless coding

networks,‖ in Proc. IEEE Inf. Theory Workshop (ITW), Lake Tahoe, CA,

USA, Sep. 2007, pp. 120–125.
[18] H. Maleki, V. Cadambe, and S. Jafar, ―Index coding: An interference

alignment perspective,‖ in Proc. IEEE Int. Symp. Inf. Theory (ISIT),

Boston, MA, USA, Jul. 2012, pp. 2236–2240.
[19] A. S. Tehrani and A. G. Dimakis, ―Finding three transmissions is hard,‖

in Proc. IEEE Global Commun. Conf. (GLOBECOM), Anaheim, CA,

USA, Dec. 2012, pp. 2317–2322.

[20] S. Brahma and C. Fragouli, ―Pliable index coding,‖ in Proc. IEEE Int.

Symp. Inf. Theory, Boston, MA, USA, Jul. 2012, pp. 2251–2255.

[21] S. Brahma and C. Fragouli, ―Pliable index coding: The multiple requests

case,‖ in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Istanbul, Turkey,

Jul. 2013, pp. 1142–1146.
[22] M. Langberg and A. Sprintson, ―On the hardness of approximating the

network coding capacity,‖ in Proc. IEEE Int. Symp. Inf. Theory (ISIT),

Toronto, ON, Canada, Jul. 2008, pp. 315–319.
[23] M. A. R. Chaudhry and A. Sprintson, ―Efficient algorithms

for index coding,‖ in Proc. IEEE Int. Conf. Comput. Commun.

Workshops (INFOCOM), Phoenix, AZ, USA, Apr. 2008, pp. 1–4.
[24] A. S. Tehrani, A. G. Dimakis, and M. J. Neely, ―Bipartite index coding,‖

in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Boston, MA, USA, Jul.

2012, pp. 2246–2250.
[25] S. El Rouayheb, A. Sprintson, and P. Sadeghi, ―On coding for coopera-

tive data exchange,‖ in Proc. IEEE Inf. Theory Workshop (ITW), Cairo,

Egypt, Jan. 2010, pp. 1–5.
[26] A. Sprintson, P. Sadeghi, G. Booker, and S. El Rouayheb, ―A ran-

domized algorithm and performance bounds for coded cooperative data

exchange,‖ in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Austin, TX,

USA, Jun. 2010, pp. 1888–1892.

[27] A. Sprintson, P. Sadeghi, G. Booker, and S. El Rouayheb, ―Determin-

istic algorithm for coded cooperative data exchange,‖ in Proc. ICST
Conf. Heterogeneous Netw. Quality, Rel., Secur. Robustness (QShine),

Houston, TX, USA, 2010, pp. 282–289.

[28] N. Milosavljevic, S. Pawar, S. El Rouayheb, M. Gastpar, and
 K. Ramchandran, ―Deterministic algorithm for the cooperative data

exchange problem,‖ in Proc. IEEE Int. Symp. Inf. Theory (ISIT), St.

Petersburg, FL, USA, Jul./Aug. 2011, pp. 410–414.
[29] M. Gonen and M. Langberg, ―Coded cooperative data exchange problem

for general topologies,‖ in Proc. IEEE Int. Symp. Inf. Theory (ISIT),

Boston, MA, USA, Jul. 2012, pp. 2606–2610.
[30] N. Milosavljevic, S. Pawar, S. El Rouayheb, M. Gastpar, and

 K. Ramchandran, ―Data exchange problem with helpers,‖ in Proc. IEEE

Int. Symp. Inf. Theory, Boston, MA, USA, Jul. 2012, pp. 2611–2615.
[31] D. Ozgul and A. Sprintson, ―An algorithm for cooperative data exchange

with cost criterion,‖ in Proc. Inf. Theory Appl. Workshop (ITA),

San Diego, CA, USA, Feb. 2011, pp. 1–4.

[32] T. A. Courtade, X. Bike, and R. D. Wesel, ―Optimal exchange of

packets for universal recovery in broadcast networks,‖ in Proc. Military

Commun. Conf., San Jose, CA, USA, 2010, pp. 2250–2255.
[33] T. A. Courtade and R. D. Wesel, ―Efficient universal recovery in

broadcast networks,‖ in Proc. Allerton Conf. Commun., Control Comput.

(Allerton), Champaign, IL, USA, 2010, pp. 1542–1549.
[34] T. A. Courtade and R. D. Wesel, ―Weighted universal recovery, practical

secrecy, and an efficient algorithm for solving both,‖ in Proc. Allerton

Conf. Commun., Control Comput. (Allerton), Champaign, IL, USA,
2011, pp. 1349–1357.

[35] A. Le, A. S. Tehrani, A. G. Dimakis, and A. Markopoulou, ―Instantly
decodable network codes for real-time applications,‖ in Proc. IEEE Int.

Symp. Netw. Coding, Calgary, AB, Canada, Jun. 2013, pp. 1–6.

[36] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. New York, NY, USA: Freeman,

1979.

[37] N. Alon and J. H. Spencer, The Probabilistic Method. New York, NY,
USA: Wiley, 1992.

[38] A. Juels and M. Peinado, ―Hiding cliques for cryptographic security,‖ in

Proc. ACM-SIAM Symp. Discrete Algorithms, San Francisco, CA, USA,
1998, pp. 678–684.

[39] D. Nguyen, T. Tran, T. Nguyen, and B. Bose, ―Wireless broadcast using

network coding,‖ IEEE Trans. Veh. Technol., vol. 58, no. 2, pp. 914–925,
Feb. 2009.

[40] M. Luby, M. Watson, T. Gasiba, T. Stockhammer, and W. Xu, ―Raptor

codes for reliable download delivery in wireless broadcast systems,‖ in
Proc. IEEE Consum. Commun. Netw. Conf. (CCNC), Las Vegas, NV,

USA, Jan. 2006, pp. 192–197.

[41] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege, ―A digital
fountain approach to reliable distribution of bulk data,‖ in Proc. ACM

SIGCOMM, Vancouver, BC, Canada, 1998, pp. 56–67.

