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Abstract— We consider the scenario of broadcasting for real-
time applications, such as multi-player games and video streaming, 
and loss recovery via instantly decodable network coding. The 
source has a  single  time  slot  or  multiple  time  slots to broadcast 
(potentially coded) recovery packet(s), and the application does not 
need to recover all losses. Our goal is to find packet(s) that are 
instantly decodable and maximize the number of lost packets that 
the users can recover.  First, we show that  this problem is 
equivalent to the unique coverage  problem  in the general case, and 
therefore, it is hard to approximate. Then, we consider the practical 
probabilistic scenario, where users have i.i.d. loss probability and 
the number of packets is either constant (video streaming), linear 
(multi-player games), or polynomial in the number of users, and we 
provide two polynomial-time (in the number of users) algorithms. 
For the single-slot case, we propose Max Clique, an algorithm that 
provably finds the optimal coded packet w.h.p. For the case where 
there is a small constant number of slots, we propose Multi-Slot Max 
Clique, an algorithm that provably finds a near-optimal solution 
w.h.p. when the number of packets is sufficiently large. The 
proposed algorithms are evaluated using both simulation and real 
network traces  from  an Android multi-player game. And they are 
shown to perform near optimally and to significantly outperform the 
state-of-the-art baselines. 

 

Keywords—      Broadcast, loss recovery, instantly decodable 
network codes, real-time applications, network coding. 

I. INTRODUCTION 

roadcasting data to multiple users  is widely used in many 

wireless applications, ranging from satellite 

communications to WiFi networks. Wireless transmissions, 

however, are subject to packet losses due to channel 

impairments, such as, wireless fading and interference. 

Effectively recovering these losses could provide tremendous 

performance improvement to many applications, especially 
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real-time applications, such as, fast-pace local multi-player 

games and live video streaming. 

We have experienced this problem firsthand. In our previous 

work, we built MicroPlay [1], one of the first networking 

frameworks for multiplayer games that exploit WiFi broadcast 

to achieve accurate game rendering and low latency. The 

rendering of a player is quicker and more accurate because it 

is done by leveraging directly the command packets generated 

by the player (that are then broadcast to the other players). 

When deploying the system, we experienced broadcast losses, 

and our measurements showed that if we could recover even   

a small percentage of packet losses (less than 1%)  in  a  

timely manner, then our game rendering engine would benfit 

tremendously, i.e., animation jitters could be completely 

eliminated. 

As another example, CrowdWiFi by Streambolico [2] is one 

of the first commercial systems that exploit WiFi broadcast to 

stream live videos to a large number of users, such as, crowds 

at stadiums, concerts, and conferences. CrowdWiFi is able to 

achieve 11x bandwidth improvement over traditional unicast 

solutions [3]. The loss recovery algorithm used by CrowdWiFi 

is the key contributor to its superior performance: it has helped 

the system to keep the number of packets that miss their 

playback deadline low even when the loss rate is high. (The 

number of packets that miss deadline is kept negligible even 

when the wireless loss rate is up to 10% [3].) 

Motivated by the importance of loss recovery in wireless 

broadcast for real-time applications, in this work, we aim to 

find the best coding scheme to recover packet losses. 

Real-time  applications  have  two  distinct   characteristics: 

(i) they have strict and urgent deadlines, i.e., a packet is 

outdated after a short amount of time, and (ii) they can  

tolerate some losses. For example, a game client can tolerate 

packet losses by partially moving (rendering) the players using 

only the received packets,  then  later  on,  it  corrects the 

players’ positions by syncing its state  periodically [1]. 

Therefore, it is highly desirable to recover packet losses with 

very low delay and within a very narrow coding window. 

Consequently, we focus on coding schemes for loss recovery 

that allows for instantaneous decoding, i.e., with zero delay. 

These schemes are also known as Instantly Decodable 

Network Codes (IDNC) [4]–[10]. 

In contrast to previous IDNC literature, our work does not 

focus on how to recover all packet losses with a minimal num- 

ber of transmissions. This is because for real-time applications, 

there may not be enough time for all receivers to recover all 

the losses. Instead, we address the practical case where the 
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source, due to real-time constraints, has a limited number of 

opportunities to send recovery packets, i.e., one time slot or    

a small number of time slots. To this end, we first investigate 

the scenario where the source has a single slot to transmit a 

recovery packet. We then use the result of our analysis for the 

single-slot scenario to analyze and design a recovery algorithm 

for the multi-slot scenario. 

We formulate the single-slot problem, which we refer to as 

the Real-Time IDNC problem, as follows: 

Consider a source that broadcasts a set of packets, , to  

 a set  of n users, .  Each user, u , wants all packets in  and 

already knows a subset  of them, u , e.g., through previous  

transmissions. The goal is to choose one (potentially coded) 

packet to broadcast from the source, so as to maximize the 

number of users who can immediately recover one lost packet. 

( This is equivalent to maximizing the number of lost packets 

that the users can recover.) 

We first show that Real-Time IDNC is equivalent to the 

Maximum Clique problem in an IDNC graph (to be precisely 

defined in Section III) as well as the Unique Coverage problem 

(introduced by Demaine et al. [11]). Therefore, these problems 

are all hard to approximate [11]. 

Then, we present the main contribution of this work: the 

analysis of random instances of the problem, where the 

probability that a user receives a packet is i.i.d. Bernoulli. This 

problem, referred to as Random Real-Time IDNC, corresponds 

to a Maximum Clique problem on an appropriately created 

random IDNC graph. Surprisingly, we show that when the 

number of packets is polynomial in the number of users, the 

Maximum Clique problem can be solved with high probability 

on this particular family of random graphs, by a polynomial- 

time (in the number of users) algorithm that we propose, called 

Max Clique. Based on the results of the single-slot scenario, 

we then extend the analysis to the scenario where there is a 

small constant number of slots, and we propose Multi-Slot Max 

Clique, a recovery algorithm that provably finds near-optimal 

solution w.h.p. when the number of packets is sufficiently large 

(to be precisely defined in Section VI-B). 

We implement and compare the proposed coding schemes, 

Max Clique and Multi-Slot Max Clique, against several 

baselines: the best repetition scheme, a COPE-like greedy 

scheme [12], the recovery scheme used by CrowdWiFi [3],  

the Ω(1/ log n)-approximation algorithm proposed by 

Demaine et al. [11], and the optimal solution (via brute  

force). Simulation results show that our proposed schemes 

perform close to the optimal solution and significantly 

outperform the state-of-the-art ones for the loss rate varying 

from 1% to 99%. For example, for the 15-user 15-packet 2-

slot case, Multi-Slot  Max  Clique  improves  by  a  factor  of 

1.3 on average over both COPE-like and best repetition code, 

and it performs up to 1.6 times better than the COPE- like 

code and up to 2.7 times better than the best repetition code. 

Finally, we evaluate Max Clique on network traces collected 

from a real-time multi-player game on  Android.  The results 

of this trace-based evaluation confirm the superior 

performance of Max Clique over the baselines. 

The rest of this paper is organized as follows. Section II 

discusses related work. Section III formulates the Real-Time 

IDNC problem. Section IV describes the Maximum Clique 

and the Unique Coverage problems and shows that these two 

problems are equivalent to Real-Time IDNC. Section V ana- 

lyzes the probabilistic version (Random Real-Time IDNC) and 

describes Max Clique, the polynomial-time algorithm to find  

a maximum clique w.h.p. Section VI analyzes the multi-slot 

scenario and describes the Multi-Slot Max Clique algorithm. 

We also discuss the support of packets with different priorities 

here. Section VII evaluates and compares our coding schemes 

with existing schemes. Section VIII concludes the paper. 

II. RELATED WORK 

Real-Time Applications That Use Wireless Broadcast: In 

our previous work, we designed and implemented MicroPlay, 

a networking framework for local multi-player games [1]. 

Games built on top of MicroPlay would have accurate ren- 

dering without the need of complex movement prediction and 

very low game latency. To achieve these desired properties, 

MicroPlay explicitly exploits the broadcast nature of WiFi: 

command packets are broadcast by the Access Point and 

pseudo-broadcast (unicast + overhearing) by the clients; these 

command packets are then used directly to render movement. 

In our experiments with MicroPlay, we have found that 

although broadcasting in our setting has a small loss rate (less 

than 1%), it demands frequent re-syncing of game state that 

incurs uncomfortable animation glitches. This motivates us to 

investigate the best way to recover loss of wireless broadcast 

in this work. 

Recently, Ferreira et al. present a live video streaming 

system that exploits WiFi broadcast and uses IDNC loss 

recovery packets [3]. By combining broadcast and coded 

recovery, the authors show that their system could  achieve  up 

to 11x bandwidth improvement compared to traditional 

unicast streaming solutions. More importantly, the authors 

have shown that their recovery coding  scheme  has  helped 

the system to keep the number of packets that miss their 

playback deadline low (negligible) even when the wireless loss 

rate is high (up to 10%). The system is currently offered by 

Streambolico as a commercial product called CrowdWiFi [2]. 

CrowdWiFi allows a WiFi base station  to  stream  live video 

at high speed to a large number of users, e.g., crowds at 

stadiums, concerts, and conferences. CrowdWiFi demonstrates 

that utilizing wireless broadcast is of high interest in practice. 

In Section VII, we compare our coding scheme to the heuristic 

coding scheme used in this system and show that we bring 

significant improvement. 

Instantly Decodable Network Coding: Katti et al. [14] 

proposed COPE, an opportunistic inter-session network coding 

scheme for wireless networks. Encoded packets are chosen in 

a heuristic way that aims to maximize the number of receivers 

that can decode them in the next time slot. Keller et al. [12] 

investigated algorithms that minimize decoding delay, includ- 

ing two algorithms that allow for instantaneous decoding: a 

COPE-like greedy algorithm and a simple repetition algorithm. 
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In Section VII, we describe these two algorithms in more detail 

and use them as baselines for comparison. 

In a follow-up work [13], Sadeghi et al. improved the oppor- 

tunistic algorithm previously proposed by Keller et  al.  [12] 

by giving high priority to packets that are needed by a large 

number of users. The authors also gave an Integer Linear 

Program formulation to the problem of finding a packet that 

can be immediately decoded (i.e., instantly decodable) by the 

largest number of users. They showed that this problem is NP-

Hard based on the Set Packing problem. We note that their 

formulation differs from ours since it requires that a coded 

packet must be instantly decodable by all users who still need 

at least one packet. This restricts the solution to the one that 

satisfies all of these users. Thus, this may lead to a suboptimal 

solution because there may be a coded packet that is only 

instantly decodable by some but not all users but is beneficial 

to a larger number of users. Our formulation ensures that we 

find this optimal packet. 

Sorour et al. have an extensive line of work investigating 

instantly decodable codes [4]–[10], focusing on minimizing 

the completion delay. They introduced the term Instantly 

Decodable Network Coding (IDNC) that we adopt in this 

work. In one of the earlier work [4], they proposed a con- 

struction of IDNC graphs based on feedback from the users 

and then introduced a transmission scheme based on graph 

partitioning. We consider the same construction of IDNC 

graphs as them [4]. Based on a stochastic shortest path 

formulation, they proposed a heuristic algorithm to minimize 

the completion delay [5]. In a latter work [6], they introduced 

the notion of generalized IDNC problem, which does not 

require the transmitted code to be decodable by all users, as 

opposed to the strict version studied previously [4], [5], [12]. 

Real-Time IDNC considers the generalized version. Further- 

more, in a follow-up work [6], they related finding an optimal 

IDNC code to the Maximum Clique problem in IDNC graphs 

and suggested that it is NP-Hard; however, no explicit reduc- 

tion was provided. In later work [7], [8], they extended the 

previous work [5] to cope with limited or lossy feedback. 

Recently, they considered the case of multicast instead of 

broadcast [9], and the case where users could buffer coded 

packets in addition to plain packets [10]. 

Li et al. [15] adopted IDNC for video streaming and 

showed that, for independent channels and sufficiently large 

video file, their proposed IDNC schemes are asymptotically 

throughput-optimal subject to hard deadline constraints when 

there are no more than three users. In contrast, we consider  

an arbitrary number of users, and we provide an  optimal 

single transmission for the single-slot case and constant 

number of near-optimal transmissions  for  the  multi-slot 

case. CrowdWiFi also uses a heuristic  IDNC  recovery 

scheme [3], which we describe in detail and compare against 

in Section VII-A. 

Index Coding: Our problem setup is relatively similar to 

that of the Index Coding (IC) problem, introduced by Birk  

and Kol [16] previously and extensively studied since. An IC 

problem also considers a source that knows a set of packets, , 

and a set of users. Each user (x, ) demands one particular 

packet, x , and has side information consisting of a subset of 

packets. The source broadcasts to all users without  errors. The 

goal is to find an encoding scheme that minimizes the number 

of transmissions required to deliver the packets to all users. 

It has been shown that except for the cases that can be 

solved with one or two transmissions, other instances of the IC 

problem are NP-Hard to solve [17]–[19], including a variation 

of IC where users are pliable and happy to receive any one 

packet [20], [21]. Furthermore, even finding an approximation 

to the problem has been shown to be hard  [22],  previous 

work [23], [24] provided heuristic algorithms to find such 

codes. 

Despite the similarities, there are two main differences 

between our problem and IC. First, in our problem, each user 

wants all the packets, not just a single packet. Second, we 

want to find an instantly decodable packet  that  maximizes the 

number of beneficiary users, not the total number of 

transmissions to satisfy all users. 

Data Exchange: The Data Exchange (DX) problem,  

originally introduced by El Rouayheb et al. [25], also has 

a similar setup to our problem. There is  a  set of packets, , 

and a set of users. Each user, u , knows  a  subset of packets, 

u ,  and  wants  all  packets  in . In DX, all users can 

broadcast messages. The objective is to find an encoding 

scheme that minimizes the number of transmissions required 

to deliver all packets in to all users. 

To solve the DX problem, a randomized polynomial-time 

solution was proposed [26], and deterministic polynominal  

time solutions were also proposed [27], [28]. There is existing 

work that studied the problem in general  network  topologies 

[29]. Variants of the problem where there  are  helpers  and 

transmission weights were also studied [30], [31]. Various 

necessary and sufficient conditions that characterize feasible 

transmission schemes for the problem were also proposed 

under a different name of universal recovery [32]–[34]. 

Similar to DX, in our setting, all users want all the packets 

in . However, there are two main differences: (i) in  our 

setting, only the source can broadcast as opposed to having  all 

users capable of broadcasting, and (ii) we are nterested in 

instantaneous decoding to maximize the number of beneficiary 

users with one transmission, as opposed to minimizing the 

total number of transmissions. 

 

Figure 1.   Example 1: A source broadcast 6 packets   p1,    , p6  to 3 users.  

Due to packet loss, user 1 only received  p1 and p2; user 2 received  p3 and p5; 
user 3 received p3 and p6. 
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Unique Coverage: This problem was originally introduced 

by Demaine et al. [11] and is as follows. Given a universe U = 

e1, , en of elements and a collection S = S1, , Sm  of subsets of 

U. Find a subcollection S
×,
, S to maximize the number of 

elements that are uniquely covered, i.e., appear in exactly one 

set of S
×
. 

The Unique Coverage problem was shown to be hard to 

approximate within a factor of Ω(1/ log
σ
 n), for some constant σ 

depending on s, assuming that NP ¢ BPTIME(2ng 
) for some s 

> 0 [11] . In this work, we show that Real-Time IDNC is 

equivalent to Unique Coverage, thus it is also hard 

toapproximate. The detailed mapping between the two 

problems is provided in Section IV. 

This Work in Perspective: A preliminary version of this 

work has appeared before [35]. In this paper, we extend the 

previous work in the following ways. First, by showing that 

Real-Time IDNC is equivalent to Unique Coverage, we show 

that Real-Time IDNC is not only NP-Hard [35] but also hard 

to approximate. Second, we extend our analysis of the single- 

slot scenario to the multi-slot scenario, and we propose Multi- 

Slot Max Clique, a recovery algorithm that provably finds 

near-optimal solutions. Finally, we collect network traces of a 

real-time application that utilizes broadcast and present a new 

evaluation based on the traces. 

III. PROBLEM FORMULATION 

Let  

  
denote the set of n users, and  P = { P1 . . . .  Pm } be the set 

of m packets. We assume that the original m packets 

were broadcast by a source.  Due to packet loss, each 

of n users missed some of the m packets. (In general, a 

user may not have missed any packet, in which case, 

we do not consider him/her as part of the problem 

formulation.) We denote the set of packets that were 

successfully received by user i by Hi . Furthermore, let  

Wi be the  set  of packets that user  i wants,  i.e.,     

 
Consistently with existing literature [4], [17], we call Hi and 

Wi the ―Has‖ and ―Want‖ sets of user i, respectively. 

After the initial  broadcast,  the  source  tries  to  recover  

the   losses, 

 
by   sending   coded   packets and exploiting the side 

information of the already delivered packets, 

 
Let the n m  matrix  A  be  the identification matrix for the 

side information of the users, i.e.,entry aij =  1  if  user ui 
wants packet pj and 0  otherwise. A is also called a 

feedback matrix [4]–[9]. Let us clarify this by an example. 

Example 1: Consider a scenario with 3 users and 6 packets. 

Furthermore, assume that after the initial broadcast, user u1 

successfully received packets p1 and p2; user u2 received p3 

and p5; and user u3 received p3 and p6. The scenario is depicted 

in Fig. 1. In this case, the side information matrix 

is as follows: 

 
To deliver the packets in the of the users, we focus on 

instantly decodable, lightweight coding schemes that operate 

over GF(2). For a set of packet  M , s the corresponding coded 

packet, c, is their binary sum, denoted by
 
 

 
Definition 2: A coded packet, c

N
 , is instantly decodable 

with respect to a set of users, N , if and only if 

(i) Every user, ui , can decode c
N
 immediately upon 

reception to recover a packet p
i
     i. That is, each user in  

Benefits from c
N
 by recovering  one of the packets from its 

want set. 

(ii) Every packet in the binary sum of c
N
 is wanted by at 

least one user in . 

For example, for the scenario of Example 1, the coded 

packet c
{u1,u2,u3} p1   p3 is instantly decodable with  

respect to u1, u2, u3 since  u1  can  recover  p3,  while  u2  and  

u3 can get p1. Meanwhile, c
{u2,u3} = p5 p6 is not instantly 

decodable with respect to u1. 

Note that without the second condition of the definition, the 

packet is still instantly decodable. This condition is included 

to facilitate the analysis: with this condition, every component 

(plain packet) of a solution  (coded  packet)  contributes  to  

the value of the solution. For instance, we do not consider 

c
{u2,u3} = p3  p5  p6 instantly decodable with respect to  

u2, u3 since although c
{u2,u3} can be decoded by u2 and u3, 

packet p3, which is a component of c
{u2,u3}, is not wanted by 

either u2 or u3. In other words, p3 does not add value to the 

solution as u2 and u3 already knew it. From here on, we will 

omit the superscript of c
N
 when there is no 

ambiguity. We would like the coded packet to be immediately 

beneficial to as many users as  possible. Thus, our notion of 

optimality  is w.r.t. the cardinality of the set of beneficiary 

users . 

The Real-Time IDNC Problem: Given a side information 

matrix A, find a (possibly coded) packet which can be 

instantly decoded by the largest number of  users.  We  refer  

to this packet an optimal recovery packet. 
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IV. MAXIMUM CLIQUES IN IDNC GRAPHS 

AND THE UNIQUE COVERAGE PROBLEM 

Given a side information matrix A, we form an Instantly 

Decodable Network Coding (IDNC) graph corresponding to A 

as in [4]: we create a vertex vij when user ui still wants packet 

pj. For instance, for matrix A in  

Example 1, there is a vertex for each entry 1 in the matrix. 

Given a vertex vij, we use the term user index of vij to indicate 

i and packet index of vij to indicate j. There is an edge between 

two vertices vij and vkA  if one of the below conditions hold: 

(i) j = A: In this case, both users ui and uk want the same 

packet p = pj = pA. 

(ii) pj    k and pA i: In this case, user uk has packet 

pj that user ui still wants, and vice versa. 

 

Figure 2. The Instantly Decodable Network  Coding  (IDNC)  graph  of  
Example 1. Solid edges  are edges  of type (i) and dashed edges  are edges    
of type (ii). There are three maximum cliques: {v13, v21, v31}, {v13, v22, v32}, and 
{v14, v24, v34}, all of which are of size 3. 

Denote the IDNC graph corresponding to a matrix A by tt
A
 

= ( , ). Figure 2 shows the IDNC graph corresponding to the 

side information matrix given in Example 1. 

A. Cliques and Instantly Decodable Packets 

Proposition 3: Finding an optimal instantly decodable code 

given a side information matrix A is equivalent to finding a 

maximum clique in the corresponding IDNC graph tt
A
. 

The proof is provided in Appendix A. Intuitively, let us 

consider the clique involving v13, v21, and v31 in Example 1. 

XORing all packets corresponding to vertices of this clique, 

i.e., p1 p3, forms an instantly decodable packet because 

(i) user 1 must have p1, and users 2 and 3 must have p3, 

otherwise there are no edges (v13, v21) and (v13, v31), and 

(ii) each component of the coded packet is wanted by the 

user corresponding to the row of the vertex. Finally, the clique 

size equals 3, which is the number of beneficiary users. 

B. Real-Time IDNC and Unique Coverage 

In a previous work [35], we showed that Real-Time IDNC 

is NP-Hard. Here we show that Real-Time IDNC is in fact 

equivalent to the Unique Coverage problem [11], thus it is not 

only NP-Hard but also hard to approximate. Recall that the 

Unique Coverage problem is formulated follows: 

Given a universe U =   e1,      , en  of elements and a 

collection S = S1, , Sm of subsets of U . Find a subcollection S
×
   

S to maximize the number of elements that are uniquely 

covered, i.e., appear in exactly one set of S
×
. 

Let  us  call  such  a  subcollection  S
×
 a  ―unique  cover‖. 

Given a Real-Time IDNC problem, one can construct the 

corresponding Unique Coverage problem as follow: for 

each user ui, create an element ei, and for each packet pj, 

create a subset Sj such that if pj is wanted by ui then Sj contains 

ei. Given a Unique Coverage problem, one can also  construct  

the corresponding Real-Time IDNC problem by reversing the 

above mapping. Consequently, based on the approximation 

result by Demaine et al. [11], we have the following result. 

Theorem 4: Given a Real-Time IDNC problem with  the 

side information matrix An×m and its corresponding Unique 

Coverage problem, finding an optimal instantly decodable 

packet and an optimal unique cover are equivalent. And 

theyare all hard to approximate within a factor of Ω(1/ log
σ
 

n), for some constant σ depending on s, assuming that NP ¢ 

BPTIME(2ng 
) for some s> 0. 

The proof of this theorem is provided in Appendix B. 

V. MAXIMUM CLIQUES IN RANDOM 

IDNC GRAPHS 

In this section, we investigate Random Real-Time IDNC.  

In particular, we assume that each user, ui, i [1, n], fails 

to receive a packet, pj, j[1, m], with the same probability, p (0, 

1), independently. For ease of analysis, we assume that m is 

linear in n: m = dn, for some constant d >  0. As we will show 

subsequently, our results also hold when m is a constant or is 

polynomial in n. A random IDNC  graph, denoted as  tt
A
(p), is 

the graph corresponding to a side information matrix  A; and 

each entry of A equals 1 with probability p and 0 with 

probability  q = 1 p independently from other entries. 

In what follows, we will provide a concentration result of 

the size of the maximum clique, i.e., the clique number, of 

random IDNC graphs. This result facilitates the design of a 

polynomial-time algorithm to find the maximum clique w.h.p. 

In particular, we will show the followings: 

(i) For any p (0, 1), the clique number for almost every  

graph  in  tt
A

(p)  equals  j∗pq
j∗−1n,  where  j∗ = argmaxj   

m,j , Njpq
j−1

. And the optimal recovery packet involves 

combining j∗ packets w.h.p. 

(ii) The maximum clique can be found in polynomial time 

in n w.h.p. We provide an explicit algorithm, Max Clique, to 

find it. Consequently, the optimal recovery packet can be 

computed in polynomial time in n w.h.p. 

Comparison to Erdős-Rényi Random Graphs: Clique num- 

bers of Erdős-Rényi random graphs with  n vertices and p = 

1/2 are known to be close to 2 log2 n [37]. However, it is 

widely conjectured that for any constant s >  0, there does not 

exist a polynomial-time algorithm for finding cliques of size 

(1 + s) log2 n with significant probability [38]. In  contrast, for 

random IDNC graphs with n m vertices, where m is 

polynomial in n, we show that the clique numbers are linear  

in n, and the corresponding cliques can be found in polynomial 

time in n. 
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Number of Packets and Number of Users: Let us consider 

two practical real-time applications: live video streaming and 

multi-player games. 

In live video streaming, there is typically a sliding widow 

where packets expire if they fall off this window. The number 

of packets sent per window is a function of the widow size 

(e.g., 1 second [3]), video bit rate (e.g., 2 Mbps), and packet 

size (e.g., 1500 B). In other words,  it  does not  depend  on the 

number of users. For analysis purposes, for this case, the 

number of packets could be considered a constant w.r.t. n. 

In MicroPlay [1], m is linear in n if there is no overhearing 

available, i.e., only the Access Point can broadcast (as in a 

typical WiFi LAN setting). This is because m directly relates 

to the number of command packets a player generates: a player 

generates command packets; packets are unicast to the Access 

Point; then the Access Point broadcasts them. 

In summary, for the class of practical real-time applications 

we consider, m is typically a constant or linear in n, and our 

results are applicable in these cases. Theoretically, our results 

hold when m is polynomial in n. 

A. Clique Number of Random IDNC Graphs 

First, observe that any k 1’s  that lie in  the same column   of 

the side information matrix A form a clique of size k in  the 

IDNC graph. Since the expected number of 1’s in a single 

column of A is np, the expected size of this type of cliques 

that involve a single column is np. As a result, we expect the 

maximum clique size to be linear in n. 

Fix a set Cj of j columns. A row r is said to be good with 

respect to Cj if among the j columns, it has 1 one and j − 1 

zeros. The probability that a row is good w.r.t. C is 

 

Let ZCj  be the number of  good rows w.r.t    j . Then ZCj  

has  a binomial distribution Bin(n, f (j)). 

Let XCj be the size of the maximum clique that has at least 

one 1  (corresponding to  a  vertex) on every column of In 

other words, the 1’s representing the vertices of the clique 

are on j columns of Cj, or the clique touches j columns of 

Cj. Observe that if j = 1, then f (1) = p, and XC1 = ZC1, 

which is the number of 1’s in the chosen column. Thus, XC1 

has a Binomial distribution Bin(n, p). For j > 1, XCj  ƒ= 

ZCj 

since the set of good rows may not have a 1 in every column 

in Cj. The following lemma states that, when ZCj  is 

sufficiently large, XCj = ZCj  w.h.p. 

Lemma 5: For a set Cj of j columns, where j is a constant, 

there exists a constant kj > 0 such that for all k ≥ kj, 

 

Proof: For k ≥ j > 0, let B
j
 denote the number of ways to 

put k 1’s into a matrix of size k × j such that (i) each row has 

one 1, and (ii) each column has at least one 1. Note that 

B
1
 = 1, and we have the following recurrence: 

 

This recurrence states that the number of ways to put k 1’s 

into k rows (each row has one 1) using exactly j columns 

equals to the number of ways to put k 1’s into k rows without 

any column restriction except for the  cases  where there  are 

1, 2, ,j 1 empty columns. It can be shown by induction 

(details are in Appendix C) that 

 

The following lemma states that XCj , the size of the max- 

imum clique that touches all j columns, heavily concentrates 

around nf (j) for large n. 

 

This probability goes to  0 as n . 

The proof is provided in Appendix D. Intuitively, this result 

follows from XC = ZC w.h.p. (Lemma 5), and the fact 

that the Binomial distributed ZCj , the number of  good 

rows, concentrates heavily around its mean, nf (j). Note that 

μδ is Θ(
√

n ln n); thus, XCj  is within Θ(
√

n ln n) of nf (j) 

w.h.p. 

Next, for a constant j, let Xj be the size of the maximum 

clique that touches any j columns. Xj also heavily concen- 

trates around nf (j). Recall that m = dn, for some constant 

d> 0. Formally, 

. 
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We note that the above concentration result also holds when 

the number of packets, m, is a constant or polynomial in the 

number of users. 

In particular, in the case that m is a constant, i.e., m = d, the 

concentration is more, i.e., the bounds are tighter: 

 

In the case that m is polynomial in n, i.e., m = n
d
, for some 

constant d > 0, we need a larger constant c (such that c> dj), 

which means less concentration (as δ is larger): 

Let kj be the minimum positive integer value of k such that 

 
Apparently, the results do not hold when m is exponential 

in n. As mentioned, the cases where m is  either a constant   or 

linear in n are sufficient for practical real-time applications 

considered in this work, such as video streaming or multi- 

player   games . 

 

   

 

Figure 3.    Plot of f (j) = jp(1 − p)j−1 for different  loss rate p. 

 
For a large enough n, it is clear that k

×
 < k

××
. 

plot shows that (i) for p 0.5, f (j) is a decreasing function, 

and for p < 0.5, f (j) initially increases then decreases, and 

(ii) j∗ increases as p decreases, which suggests the following 

key insight: 

The number of packets that should be coded together 

increases when the loss rate decreases. 

Fig. 4 plots the values of f (j∗) and the corresponding 

values of j∗. An important observation from Fig. 4 is that even 

when the loss rate is small, the clique size is still high. For 

instance,   

when  p  =  0.1,  we  have  j∗ =  9  and  f (j∗)  c  0.38,  which  

means that the optimal packet involves coding 9 plain 

packets together, and this packet will benefit about 38% of the 

users. To better understand the implication of this result, let us 
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discuss two extreme cases: large p and small p. When the loss 

rate p is large (e.g., greater than 0.9), our analysis shows that  

j∗ =  1,  thus  f (j∗)  =  f (1)  =  p,  indicating  that  w.h.p, 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Values of f (j∗) and its corresponding j∗. The clique number 

heavily concentrates around f (j∗) × n, and j∗ is the number of packets 

should be coded together. 

the maximum clique corresponds to some (roughly) pn 

nodes, all having a 1 under the same packet in the side 

information matrix. Therefore, the broadcast of that single 

uncoded packet is most likely optimal. When p is small (e.g., 

less than 0.1), our analysis shows that j∗ > 9, i.e., there is a 

likely a clique of size j∗(1 p)j
∗−1pn > pn, involving nodes 

in j∗ different columns, and these nodes are connected in the 

IDNC graph by the edges of  the second type. For such  

cliques, we need  to code. We further elaborate on these cases 

at the end of  Section VII-A, where we discuss the simulation 

results. 

B. Finding a Maximum Clique 

Based on the analysis in the previous section, we propose 

Max Clique (Algorithm 1). It examines all cliques that touch 

j columns, for all j combinations of m columns, where j is 

within a small constant Δ neighborhood of j∗, where Δ is a 

small constant, e.g., Δ 3. 

Lemma 9: For a sufficiently large n, Algorithm 1 finds a 

maximum clique of a given random IDNC graph w.h.p. 

Proof: Because Max Clique examines all cliques that touch  

j∗ columns,  the  correctness  of  the  algorithm  follows from 

Corollary 8. 

Δ improves the performance of the algorithm in practice, 

when n may not be sufficiently large. In Section VII, we how 

that a small value of Δ = 3 is sufficient for Max Clique to 

achieve top performance for n = 5, 8, 15. Note that the larger n 

is, the smaller Δ has to be. 

Complexity: Recall that jmax = argmaxj Nf (j). If  jmax  <  

m,  then  j∗  =   jmax.  For  a  constant  loss  rate p, jmax is a 

constant. Then for each loop starting at Line 3 

runs at most 2Δ m jmax+Δ times. The for loop starting at 

Line 5 runs n times. The if condition check at Line 6 

examines up to jmax +  Δ entries. The total runtime is at 

Most . 

 
Thus in this case, Max Clique runs in polynomial time in n 

if m is  polynomial in n. 
 

 

If  m ≤  jmax,  then  j∗
. =  mΣ.  The .forΣeach  loop  starting  at 

  
.   Σ

Δ n(m+Δ) = O(nm ). 

Thus, in this case, Max Clique  

n times. The if condition check at Line 6 examines up to  

m + Δ entries. The total runtime is 

mΔ+1= Δ 

also runs in polynomial time in n if m is polynomial in n. 

Optimal Coded Packet: Given the vertices of the maximum 

clique output by Max ≤ Clique, one can readily compute the 

optimal instantly decodable packet by XORing the packets 

whose indices correspond to the packet indices of the output 

vertices, as indicated in Proposition 3. 

VI. THE MULTI-SLOT MAX CLIQUE 

ALGORITHM 

So far, we consider the scenario where the source has a 

single slot to broadcast a single recovery packet. However, for 

some real-time applications, for the same feedback matrix, the 

source may have opportunities to broadcast multiple recovery 

packets. In this section, we formulate the problem of loss 

recovery for the scenario where there is a small constant 

number of slots. We show that this problem is also hard to 

Δ 
starting at Line 5 runs 

m−Δ
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approximate. We then extend our analysis in the probabilistic 

setting for the single-slot scenario to the multi-slot scenario, 

where the number of packets is sufficiently large. Based on the 

analysis, we present the Multi-Slot Max Clique algorithm that 

can find a near-optimal solution w.h.p. 

A. Multi-Slot Formulation 

The number of transmission opportunities (time slots) for 

recovery packets depends on many factors. For example, in 

CrowdWiFi [2], [3], the video base station only broadcasts 

recovery packets when its incoming buffer does not contain 

any new packet (new video data) or any critical packet (packets 

medium, the reception rates at the users, and maybe on other 

factors as well. We formulate the problem of loss recovery for 

the multi-slot scenario as follows: 

Consider a source that broadcasts a set of packets, to a set of 

users . Each user, u, already knows a  subset of them, u , 

through the previous broadcasts and wants the rest, u =u. 

Given  t time slots, where t is a small constant, 0 < t <u∈U u 

, the goal is to choose up to t instantly decodable packets to 

broadcast from the source, so as to maximize the number of 

lost packets that the users can recover. 

The multi-slot problem is at least as hard to approximate as 

the single-slot problem. This is a direct result of the single- 

slot analysis. (The reduction from the multi-slot problem to 

single-slot problem is by setting t =  1.)  Next,  we  analyze the 

multi-slot problem in the probabilistic setting, where the 

number of packets is sufficiently large (as  defined below).  

We then present the Multi-Slot Max Clique algorithm, that is 

constructed based on the analysis and can find a near-optimal 

solution w.h.p. 

B. The Multi-Slot Max Clique Algorithm 

Analysis: Consider the probabilistic setting of the t-slot 

scenario with uniform loss rate p. For the analysis in this 

section, we assume that m is sufficiently large: 

m> tjmax, 

where jmax = argmaxj   Nf (j) = argmaxj   Njp(1     p)j−1. 

Recall that for the single-slot scenario, the maximum clique 

concentrates around nf (jmax) w.h.p. The key observation we 

use to extend the single-slot result to the multi-slot scenario is 

that the size of the maximum clique does not depends on the 

number of packets but only depends on the number of users 

and the loss rate. 

Let us analyze the following algorithm, called ―Multi-Slot 

Max Clique with Removal‖ or MSMCR for short, that uses 

Max Clique consecutively t times: for each time i = 1,  , t, run 

Max Clique to find the maximum clique Ci, then remove the 

jmax columns that are associated with Ci before the next 

iteration. Finally, the algorithm outputs C1, , Ct as the resulting 

cliques. Since these cliques have non-overlapping vertices, the 

size of the solution, i.e., the number of packets that can be 

recovered, denoted by MSMCR, is 
t
  Ci . Now, let OPT 

denote the size of the optimal solution for the t-slot 

problem. The following lemma states that, in the worst case, 

MSMCR is (t 1) 2μδ smaller than OPT w.h.p. 

 

already broadcast but missing at some of the users  and   

needed immediately for playback). In general, the number of 

recovery time slots depends on the video bit rate, the outgoing 

transmission rate of the station, the loss rate of the wireless 

 

This probability goes to  0 as n . 

The proof of this lemma is provided in Appendix E. 

 

Algorithm: We construct the Multi-Slot Max Clique algo- 

rithm based on the MSMCR algorithm. Algorithm 2 describes 

Multi-Slot Max Clique. Multi-Slot Max Clique is an 

improvement of MSMCR as it does not perform the removal 

step, i.e., it investigates all cliques that MSMCR does and 

some more. Consequently, the solution of Multi-Slot Max 

Clique is at least as good as MSMCR. 

In particular, in the first slot, it uses the result of Max Clique 

(Line 1). In subsequent slots, it executes a variant of Max 

Clique (Line 5–17), where the criterion to choose the current 

clique is that its union with the previously chosen cliques 

should have the largest number of vertices (Line 13). In other 

words, at step  i >  1, clique Ci is chosen such that the union  

of all the cliques C1, , Ci covers the largest number of vertices. 
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omplexity: The Multi-Slot Max Clique algorithm essen- 

tially executes Max Clique t times where t is a small constant. 

Thus, it is still polynomial in n when m is polynomial in n. 

Coded Packets: Given the vertice sets C1, , Ct of 

cliques output by Max Clique, one can compute an instantly 

decodable packet corresponding to each clique as before. 

C. Packet Priority 

Different packets in a real-time application may have differ- 

ent priorities. For example, in a video streaming application, a 

packet, pj, could be more urgent than others if it is needed for 

immediate video playback at a receiver, ui.  (CrowdWiFi has  

a similar concept of α-critical packets [3].) In this scenario, a 

coded packet should be constructed to facilitate the immediate 

recovery of pj at user ui. Finding the optimal coded packet here 

is equivalent to finding the maximum clique that has vertex vij 

in the IDNC graph. 

This variation of the problem, called Priority IDNC, is also 

at least as hard to approximate as Real-Time IDNC. The sketch 

of the reduction is as follow. Any Real-Time IDNC problem 

can be mapped into an instance of Priority IDNC  by creating 

a new user u and a new packet p, where u has all existing 

packets but not p, and  all  existing  users  have p.  This pair u, 

p then corresponds to the only new vertex, v, in the new IDNC 

graph, and this vertex connects to all existing vertices. 

Thus,is a clique in the original IDNC graph if  and  only if v 

is a clique in the new IDNC graph. Therefore, any 

algorithm that solves Priority IDNC can be used to solve Real- 

Time IDNC: the solution to Real-Time IDNC can be 

obtained by removing v from the solution of Priority IDNC. 

In the probabilistic setting, Max Clique can be used to find 

a good coded packet for Priority IDNC as follow. Given a 

feedback matrix A and an urgent vertex vi,j, we form a smaller 

feedback  matrix  A× by  removing  all  users  who  do  not  have 

packet pj and all packets that user ui does not have. Now, if 

is a clique in tt
A∗ 

then          vi,j  is a clique in tt
A

. (Note that 

the reverse is not true.) This is because every vertex in tt
A∗ 

connects to vi,j by an edge of the second type. Thus, we can 

add vi,j to the solution of Max Clique for tt
A∗ 

to form a 

solution for the original Priority IDNC problem. 

Other greedy-based coding schemes, e.g., COPE-Like and 

CrowdWiFi’s regular coding scheme [3], [12], that form a 

coded packet by consecutively adding plain packets in multiple 

rounds (described in detail in Section VII-A) can be modified 

to heuristically address this Priority IDNC problem as well. 

The modification is by starting with pj in the first round, and 

maintaining the decodability of pj at ui at every subsequent 

round. This approach is similar to the Critical Recovery 

algorithm in CrowdWiFi [3]. 

VII. PERFORMANCE EVALUATION 

A. Numerical Evaluation 

In this section, we use simulation to compare the perfor- 

mance of the proposed algorithms: Max Clique (Algorithm 1) 

and Multi-Slot Max Clique (Algorithm 2) against several 

baselines: an optimal repetition-based algorithm, a COPE-like 

algorithm [12], the recovery algorithm used by CrowdWiFi [3], 

the Ω(1/ log n)-approximation algorithm [11], and the opti- 

mal solution (via brute force). We describe these baseline 

algorithms below. 

Best Repetition: This algorithm sorts the plain packets in the 

decreasing order of the number of users who still wants the 

packets. Then it rebroadcasts the packets in this order. This is 

inherently the best repetition strategy. 

COPE-Like [12]: For the single-slot case, this algorithm 

goes through all the packets that are still wanted by at least 

one user in a random order, and it tries to compute a coded 

packet, c, that is instantly decodable to all users. In particular, 

it begins by selecting the first packet of a random permutation, 

c = p1. It then goes through the rest of the packets one by 

one in that order. At each step j, j  > 1, it XORs the next  

packet with c if the resulting c is still instantly decodable  

to users; otherwise, it consider the next packet in the line. 

For the multi-slot scenario, this process is repeated with a 

smaller coding pool where the packets already used in the 

previous slots are removed. 

Greedy-Exhaustive [3]: This refers to the coding scheme 

used in the Recovery Algorithm of CrowdWiFi for video 

streaming [2], [3]. This algorithm is similar to the above 

COPE-Like algorithm, except for two changes: (i) it starts 

with c = p1, where p1 is wanted by the most number of 

users, and (ii)  at  each  step  j  > 1,  it  chooses  pj such  that c 

= c pj is instantly decodable to the most number of users, i.e., 

by exhaustively searching among all remaining packets.    

It stops when it cannot find a new c that increases the 

number of benefiting users. As described, this algorithm’s 

runtime is in O(m!), which is exponential in n. For a fair 

baseline of comparison against our multi-slot algorithm, we 

extend this coding scheme to support the multi-slot scenario 

by removing packets already used in the previous slots from 

the coding pool,1 similar to the COPE-Like. 

Ω(1/ log n)-Approximation [11]: We will simply refer to 

this as Approximation. The algorithm was  originally  given 

for the generalized  Budgeted  Unique  Coverage  problem.  

To adopt the algorithm for the  Unique  Coverage  problem, 

we set the  profits of all  elements  to 1,  costs  of all  subsets 

to 1, and the budget to the number of subsets, which is  m.  We 

refer the reader to Section 4.1 of the original work of Demaine 

et al. [11] for the detailed description of the algo- rithm. We 

also extend this coding scheme to support the multi- slot 

scenario by removing already used in the previous slots from 

the coding pool. 

Optimal (Brute Force): Given a feedback matrix A and 0 < 

d <   u∈U   u , the optimal algorithm exhaustively search for d 

or less cliques that cover the largest number of vertices in the 
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IDNC graph of A. The  algorithm runtime is  in  O(2dm) as it 

enumerates all subsets of size d or less of the set of all possible 

coded packets. This is clearly not practical for large 

problem instances and is only used here to assess how far 

from the optimal our proposed algorithms perform. 

Random Repetition: For reference, we also include the 

Random Repetition algorithm, which chooses a random per- 

mutation of the packets that are still wanted by at least one 

user, then rebroadcasts them in this order. 

Simulation Setup: For  each  loss  rate  ranging  from  1%  

to 99%, per 1% increment, we randomly generate 100 side 

information matrices. We then run all  the  algorithms  on 

these  matrices.  For  the  Max  Clique  and  Multi-Slot  Max 

Clique  algorithms,  we  set  Δ,  the  neighborhood  around  

j∗, to   3.   Fig.   5   plots   the   average  numbers  of packets  

that 

can  be  recovered  by  the  users  for  three  parameter 

settings 

{n  =  15,m  =  15,t  =  1},  {n  =  8,m  =  8,t =  2}, 

and {n = 5,m = 5,t = 3}. Note that in this  set  of 

simulation, to accommodate the expensive computation of the 

Optimal algorithm, we have to decrease the problem size as we 

increase the number of slots. Omitting the Optimal solution, 

Fig. 6 provide plots for larger problem size  for  the  multi- 

slot scenarios: {n = 15,m = 15,t = 2}, {n = 15,m = 15, 

 

Figure 5 (a) 

 

Figure 5 (b) 

 

Figure 5 (c) Max Clique and Multi-Slot Max Clique have close to optimal 
performance while consistently outperforming the baselines when there are 5 

users and 5 packets  to 15 users  and 15 packets.  (a) n  = 15 users,      m =  

15  packets,  t  =  1  slot.  (b)  n  =  8  users,  m  =  8  packets,  t = 2  slots. 

(c) n = 5  users, m = 5  packets, t = 3  slots. 

t = 3}, and {n = 15,m = 15,t = 4}. We have also performed 

simulation for larger settings, {n = 20,m = 20,t = 1} and {n 

= 20,m = 40,t = 1} [35] that show similar results and we 

 

Figure 6 (a) 

 

Figure 6 (b) 
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 Figure  6 ( c ) Multi-Slot  Max  Clique  consistently  outperforms  the  
baselines when there are 15 users and 15 packets. (a) n = 15  users,  m  =  15  

packets, t =  2 slots. (b) n = 15 users, m = 15 packets, t =  3 slots.(c) n = 15 

users, m = 15 packets, t =4 slots. 

omit here due to redundancy. For clarity, we skip plotting 

the standard deviations, which range from 0 to 3 for all 

algorithms. Results: In Fig. 5, we can observe that both the 

proposed Max Clique and Multi-Slot Max Clique algorithms 

perform very close to the Optimal algorithm. In particular, for 

t = 1 in Fig. 5(a), Max Clique has identical performance to the 

Optimal 91% of the time. For t = 2, 3 in Fig. 5(b) and 5(c), 

Multi-Slot Max Clique has identical performance to the  

Optimal 50%   of the time and 98% of the time within 0.1 of 

the optimal value. This validates our analysis of the single-slot 

scenario and demonstrates that the Multi-Slot Max Clique can 

also find near-optimal solution for the multi-slot scenario. 

One can also observe from Fig. 5 that the proposed Max 

Clique and Multi-Slot Max Clique algorithms  consistently 

and significantly outperform the baselines. In particular, for 

the case {n =  15,m  =  15,t  =  1},  on  average,  Max Clique 

performs 1.3 times better than both the Best Repetition and 

COPE-Like, with the highest improvement over Best 

Repetition and COPE-Like at 3.3 and 1.6 times, respectively. 

It also performs up to 1.12 times better than the state-of-the-art 

Greedy-Exhaustive algorithm, noticeably in the wide range of 

loss rate from 10% to 60%; note that Greedy-Exhaustive has 

exponential runtime. We also observe that the Approximation 

algorithm has poor performance: only slightly better than the 

Random Repetition in the single slot scenario and worse in  

the multi-slot scenarios. 

In addition, Fig. 6 demonstrates the consistent superior 

performance of Multi-Slot Max Clique for a larger problem 

size {n = 15,m  =  15}  and  more  number  of  slots  {t  =  2, 

3, 4}. For instance, for the case {n = 15,m = 15,t = 2}, , 

Multi-Slot Max Clique improves by a factor of 1.3 on average 

over both COPE-Like and Best Repetition, and it performs up 

to 1.6 times better than the COPE-Like and up to 2.7 times 

better than Best Repetition. 

Two interesting regions can be observed from the curves in 

both Fig. 5 and Fig. 6, i.e., across all settings: 

Repetition Region: When the loss rate is larger than a certain 

threshold: about 65% for {n = 15,m = 15} (and also for 

{n = 20,m = 20} as in [35]), the performance of (Multi- 

Slot) Max Clique, Best Repetition, Greedy-Exhaustive, and 

Optimal are the same. This indicates that beyond this point,    

it is optimal to just send uncoded packet(s). This is because 

there are very likely uncoded packets that are missed by many 

users due to high loss rate. Thus, we refer to  this region as  

the Repetition region. 

Easy Coding Region: When the loss rate is less than another 

threshold: about 10% for {n = 15,m = 15} (or 5% for 

{n = 20,m = 20} [35]), the performance of (Multi-Slot) 

Max Clique, Greedy-Exhaustive, COPE-Like, and  Optimal 

are very similar. We look into this region carefully in our 

simulation, and we find that for this low loss  rate  region,  

best coded packets typically involve many uncoded packets but 

there are many opportunities to code. Thus, they can be easily 

found with a greedy approach. Furthermore, they typically 

have similar benefit. Consequently, all the coding schemes 

investigated here have similar performance that is close to the 

Optimal. We refer to this region as the Easy Coding region. 

Best Practice: The above observations suggest that it would 

be beneficial to figure out if an  application  operates  in  

either of the Repetition or Easy Coding regions, e.g., by 

applying multiple algorithms described here and monitoring 

their performance for a short period of time. Then for the 

 

Figure 7. MicroPlay networking model: One phone acts as the WiFi access  
point and as the game server. This phone uses WiFi broadcast to disseminate 

its game commands. 

best performance and speed, one could use the simple Best 

Repetition for the Repetition region or COPE-Like for the 

Easy Coding region as both of these simple algorithms run    

in just linear time. Outside of these regions, Multi-Slot Max 

Clique is the best candidate. 

Commercial systems, like CrowdWiFi [3], could  readily 

get significant improvement in both speed and  performance 

by replacing their existing coding algorithms, e.g., Greedy- 

Exhaustive, with Multi-Slot Max Clique or a combination of 

algorithms as described above. 

B. Trace-Based Evaluation 

In this section, we evaluate the performance of  Max  

Clique in comparison with the baselines,  Best  Repetition  and 

COPE-Like, using real network traces of an Android 

application called Racer [1]. Racer is a real-time multi-player 

racing game implemented on top of a networking framework, 

called MicroPlay, that we previously developed [1]. MicroPlay 

exploits wireless broadcast to disseminate input commands 

from one player to the rest in a timely manner to support 

accurate game rendering and low latency. 
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In particular, in Racer, each player’s car races around a 

closed rectangular track and broadcast its movement continu- 

ously to the rest of the players. A player uses the broadcast 

packets to update the positions of the other players’ cars. In 

the context of this work, we  examine the packets broadcast  

by one player, who is acting as the game server and the WiFi 

access point to the group, depicted in Fig. 7. This scenario we 

select for evaluation here, in principle, matches the broadcast 

scenario that we examined earlier in our analysis in Fig. 1. 

C. Trace Collection and Description:  

We created a  Racer game session that has 5 players: 1 

server and 4 clients, as shown in Fig. 7. The hardware in use 

consist of 3 Samsung Captivate and 2 Nexus S phones, all 

running Android OS 

2.3 (Gingerbread). The players are scattered in an on-

campus cafeteria, whose area is of sizes approximately 40 x 40 

meters. The game session occurs during a busy lunch hour.2 

Each packet broadcast by the  server  has  a  unique  ID.  

We implemented a statistics-collection module within the 

Racer game client to capture the reception of the packets 

broadcast by the server: each client logs the packets it were 

able to receive and the time it received them. The game 

session lasted about 15 minutes, and during the game, the 

server broadcast 19,059 packets, about a packet every 47 ms 

on average. 

The average reception rate of all 4 clients during the game 

is shown in Fig. 8(a) by the  ―No  Recovery‖  line.  Each  

point plotted represents the average reception rate of packets 

broadcast within a 10-second bin. Fig. 8(a) shows that the 

average reception rate of the clients is high: most of the time 

above 90%. Nevertheless, there are several instances when the 

average reception rate drops below 90%, for example, from 

second 574 to 738. Also, the average reception rate drops as 

low as 23% at second 811. The reception rates are quite similar 

across the clients. For this reason, we skip reporting the plots 

of the individual client rates. 

D. Settings: 

 For each batch of packet of size B, we compute a recovery 

packet using the Best Repetition, COPE-Like, and Max Clique 

algorithms with loss rate  p  =  12%  (average rate we 

observed previously in the same environment). This recovery 

packet is to be broadcast at the end of each batch by the server 

to recover packet losses at the client. For evaluation purposes, 

we assume that this packet would be successfully received by 

all the clients. We then compute the new reception rates at the 

clients for each recovery scheme. 

E. Results:  

Fig. 8(a) plots the average reception rate when each of the 

recovery schemes is used for batch size B = 10. It could be 

observed from this figure that Max Clique consistently 

outperforms the COPE-Like and Best Repetition. In other 

words, the improvement of the average reception rate is higher 

when Max Clique is used to compute the recovery packet. 

In more details, Fig. 8(b) plots the number of beneficiary 

users when each of the recovery scheme is used. Each point 

plotted is  the average over multiple recovery packets within   

a 10-second bin. Fig. 8(b) shows that the recovery packets 

computed by Max Clique  consistently  benefit  more  users: 

on average, Max Clique helps 16% more users than Best 

Repetition and 26% more users than COPE-Like. The perfor- 

mance gaps between Max Clique and the baselines are more 

noticeable when the reception rates are low, e.g., between 

second 574 and 738, or at second 811, where Max Clique 

helps 50–250% more users than the others. 

We also perform similar  evaluation  for  batches  of  sizes B 

=  5 and B = 20. For B = 5, the average performance 

improvement of Max Clique over Best Repetition is 5% and 

over COPE-Like is  12%,  which  are  less  than  those  when 

B = 10. This is due to the reduced number of coding 

opportunities (over just 5 packets). For B = 20, the average 

performance improvement of Max Clique over Best Repetition 

is 12% and over COPE-Like is 28%, which are similar to those 

when B = 10. This implies that B = 10 creates sufficient 

coding opportunities for the loss rates of this set of traces. 

Finally, unlike the numerical results reported in the previous 

section, Fig. 8 shows that Best Repetition consistently outper- 

forms COPE-Like. This is likely due to  the dependency of  

the packet losses at the clients: a packet lost at a client is  

likely to be lost at other clients, which implies that re-sending 

this packet might benefit many clients. This also occurs when 

B = 5 and B = 20. 

VIII. CONCLUSION 

In this paper, we study packet loss recovery in wireless 

broadcast for real-time applications, namely video streaming 

and multi-player games. 

First, we investigate  the  scenario  where  the  source  has  a 

single time  slot  to  broadcast  a  single  recovery  packet. We 

formulate the  Real-Time  IDNC  problem,  which  seeks to 

compute a recovery packet that  is  immediately beneficial to 

the maximum number of users. We show that Real-Time 

IDNC is equivalent to Unique Coverage [11], which is hard to 

approximate. We then analyze the Random Real-Time IDNC, 

where each user is assumed to lose every packet with  the 

same probability independently. When the number of packets 

is polynomial in the number of users, we show that the optimal 

packet could be computed in polynomial time in the number 

of users w.h.p. We provide an explicit algorithm, called Max 

Clique, to find the optimal packet w.h.p. 

Second, we consider the scenario where the source has a 

small constant number of time slots to send multiple instantly 

decodable recovery packets, which is at least as hard to 

approximate as Real-Time IDNC. For the probabilistic version 

of the multi-slot problem, we propose Multi-Slot Max Clique, 

a polynomial-time algorithm that is developed based on Max 

Clique and provably finds a near-optimal solution w.h.p. when 

the number of packets is sufficiently large. 

Finally, we evaluate the proposed algorithms numerically 

(via simulation) as well as experimentally (based on real 
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network traces). The results demonstrate that (i) the proposed 

algorithms perform very close to the optimal, and (ii) they 

consistently and significantly outperform all the state-of-the- 

art baselines. 
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